Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ji-Kyung Choi is active.

Publication


Featured researches published by Ji-Kyung Choi.


NeuroImage | 2006

Brain hemodynamic changes mediated by dopamine receptors: Role of the cerebral microvasculature in dopamine-mediated neurovascular coupling

Ji-Kyung Choi; Y. Iris Chen; Edith Hamel; Bruce G. Jenkins

The coupling between neurotransmitter-induced changes in neuronal activity and the resultant hemodynamic response is central to the interpretation of neuroimaging techniques. In the present study, MRI experiments showed that dopamine transporter blockers such as cocaine and dopamine releasers such as amphetamine and D1 receptor agonists induced large positive increases in relative cerebral blood volume (rCBV) that were not sensitive to nitric oxide synthase inhibition. However, D1/D5 receptor antagonism with SCH-23390 prevented or blocked the hemodynamic response without any concomitant effect on dopamine release. Dopamine D2/D3 receptor agonists, in contrast, induced negative changes in rCBV in brain regions corresponding largely to those endowed with these receptors. D1 and D5 receptor mRNAs were expressed in microvessels of responsive brain areas, while D2 and D3 receptors were not consistently associated with the microvascular bed. D3 receptors had an astroglial localization. Together, these experiments show that direct effects of dopamine upon the vasculature cannot be ignored in measuring the hemodynamic coupling associated with dopaminergic drugs. These results further suggest that this coupling is partially mediated through D1/D5 receptors on the microvasculature leading to increased rCBV and through astroglial D3 receptors leading to decreased rCBV. These data provide additional support for the role of local post-synaptic events in neurovascular coupling and emphasize that the interpretation of fMRI signals exclusively in terms of neuronal activity may be incomplete.


Brain Research | 2004

Magnetic resonance spectroscopic analysis of Alzheimer's disease mouse brain that express mutant human APP shows altered neurochemical profile

Alpaslan Dedeoglu; Ji-Kyung Choi; Kerry Cormier; Neil W. Kowall; Bruce G. Jenkins

Transgenic mice that express mutant human amyloid precursor protein (APPTg2576) develop beta-amyloid (Abeta) plaques throughout the cortex starting at 10-12 months of age. We examined the neurochemical profile of APPTg2576 mice using in vitro and in vivo magnetic resonance spectroscopy (MRS); gross abnormalities using magnetic resonance imaging (MRI) and plaque distribution; size and number using immunohistochemistry. Transgenic mice were anesthetized with halothane and scanned at 4.7 T using T2-weighted imaging and in vivo MRS of frontal cortex. In vitro MRS was run from brain extracts of frontal cortex in both APP and wild-type mice. Mice were also perfused and brains were collected and cut for immunohistochemistry. We found that N-acetylaspartate (NAA), glutamate and glutathione were decreased by 17%, 22% and 36%, respectively, in the cerebral cortex of APP transgenic mice at 19 months of age when Abeta deposits are widespread. Taurine was increased 21% compared to wild-type. Decreased levels of NAA and increased levels of taurine are consistent with decreased neuronal viability and increased glial volume, and are similar to findings of decreased NAA and increased myo-inositol in human Alzheimers disease (AD) brains. Correlation between the severity of Abeta deposition and altered neurochemical profile remains to be studied. Nevertheless, the altered neurochemical profile may be a valuable marker to test therapeutics in this mouse model.


Magnetic Resonance in Medicine | 2004

Exogenous contrast agent improves sensitivity of gradient-echo functional magnetic resonance imaging at 9.4 T.

Joseph B. Mandeville; Bruce G. Jenkins; Yin-Ching I. Chen; Ji-Kyung Choi; Young R. Kim; Deniz Belen; Christina H. Liu; Barry E. Kosofsky; John J. A. Marota

Relative to common clinical magnetic field strengths, higher fields benefit functional brain imaging both by providing additional signal for high‐resolution applications and by improving the sensitivity of endogenous contrast due to the blood oxygen level dependent (BOLD) mechanism, which has limited detection power at low magnetic fields relative to the use of exogenous contrast agent. This study evaluates the utility of iron oxide contrast agent for gradient echo functional MRI at 9.4 T in rodents using cocaine and methylphenidate as stimuli. Relative to the BOLD method, the use of high iron doses and short echo times provided a roughly twofold global increase in functional sensitivity, while also suppressing large vessel signal and reducing susceptibility artifacts. Furthermore, MRI measurements of the functional percentage change in cerebral blood volume (CBV) showed excellent agreement with results obtained at much lower magnetic field strengths, demonstrating that MRI estimates of this quantity are roughly independent of magnetic field when appropriate techniques are employed. The derived field dependencies for relative sensitivity and MRI estimates of the percentage change in CBV suggest that the benefits provided by exogenous agents will persist even at much higher magnetic fields than 9.4 T. Magn Reson Med 52:1272–1281, 2004.


Psychopharmacology | 2005

Mapping dopamine D2/D3 receptor function using pharmacological magnetic resonance imaging

Yin-Ching I. Chen; Ji-Kyung Choi; Susan L. Andersen; Bruce R. Rosen; Bruce G. Jenkins

RationaleRegulation of dopamine release and synthesis occurs via pre-synaptic dopamine (DA) D2/D3 autoreceptors (DARs). Mapping of DAR function in vivo is difficult and is usually best assessed using invasive measures of DA release, such as microdialysis at discrete sites. We wished to show that pharmacological magnetic resonance imaging (phMRI) may prove useful for this purpose.ObjectiveTo demonstrate that the relative cerebral blood volume (rCBV) changes induced by amphetamine can be modulated by DA D2 receptor antagonists and agonists in a manner consistent with modulation of DAR function and to compare these effects with microdialysis.MethodsWe used phMRI with iron oxide contrast agents to map changes in rCBV in response to an amphetamine challenge, pre-treatment and post-treatment with varying doses of the D2 antagonist eticlopride and the D2 agonist quinpirole. We also compared the effects of D2 antagonism using microdialysis measurements of DA release.ResultsAntagonism of D2 receptors with eticlopride potentiated rCBV changes induced by amphetamine in the nucleus accumbens and caudate putamen in a dose-dependent manner. The amphetamine-induced increase in rCBV in the accumbens in animals pre-treated with eticlopride was paralleled by a similar percentage increase in DA release measured by means of microdialysis. Conversely, agonism of D2 receptors using quinpirole reduced amphetamine-induced rCBV changes in the caudate putamen and nucleus accumbens. The effects of both quinpirole and eticlopride on amphetamine-induced rCBV changes were largest in the nucleus accumbens.ConclusionsThese results suggest that phMRI may potentially prove useful to map DAR function non-invasively in multiple brain regions simultaneously.


Annals of Neurology | 2004

Basal ganglia activity remains elevated after movement in focal hand dystonia.

Anne J. Blood; Alice W. Flaherty; Ji-Kyung Choi; Fred H. Hochberg; Douglas N. Greve; Giorgio Bonmassar; Bruce R. Rosen; Bruce G. Jenkins

Although previous studies of focal hand dystonia have detected cortical sensorimotor abnormalities, little is known about the role of the basal ganglia in this disorder. We report here that when focal hand dystonic patients performed finger‐tapping tasks, functional magnetic resonance imaging showed persisting elevations of basal ganglia activity after the tasks ended. We posit that inhibitory control of the basal ganglia may be faulty in focal hand dystonia, and that the increases we observe in “resting” activity may mask basal ganglia abnormalities in standard imaging contrast analyses.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Identification of discrete functional subregions of the human periaqueductal gray

Ajay B. Satpute; Tor D. Wager; Julien Cohen-Adad; Marta Bianciardi; Ji-Kyung Choi; Jason T. Buhle; Lawrence L. Wald; Lisa Feldman Barrett

Significance The periaqueductal gray is a brainstem region that is critical for autonomic regulation and for defensive responses (e.g., “fight,” “flight,” “freeze”). It has been studied extensively in rodents and cats, but less is known about the human periaqueductal gray. The small size and shape of the periaqueductal gray makes it challenging to study using standard noninvasive MRI techniques. We used a high-field strength magnet to examine this region at high resolution while participants viewed emotionally aversive or neutral images. Emotion-related functional activity was concentrated in particular subregions and in ways that are consistent with neurobiological observations in nonhuman animals. This study establishes a technique to uncover the functional architecture of the periaqueductal gray in humans. The midbrain periaqueductal gray (PAG) region is organized into distinct subregions that coordinate survival-related responses during threat and stress [Bandler R, Keay KA, Floyd N, Price J (2000) Brain Res 53 (1):95–104]. To examine PAG function in humans, researchers have relied primarily on functional MRI (fMRI), but technological and methodological limitations have prevented researchers from localizing responses to different PAG subregions. We used high-field strength (7-T) fMRI techniques to image the PAG at high resolution (0.75 mm isotropic), which was critical for dissociating the PAG from the greater signal variability in the aqueduct. Activation while participants were exposed to emotionally aversive images segregated into subregions of the PAG along both dorsal/ventral and rostral/caudal axes. In the rostral PAG, activity was localized to lateral and dorsomedial subregions. In caudal PAG, activity was localized to the ventrolateral region. This shifting pattern of activity from dorsal to ventral PAG along the rostrocaudal axis mirrors structural and functional neurobiological observations in nonhuman animals. Activity in lateral and ventrolateral subregions also grouped with distinct emotional experiences (e.g., anger and sadness) in a factor analysis, suggesting that each subregion participates in distinct functional circuitry. This study establishes the use of high-field strength fMRI as a promising technique for revealing the functional architecture of the PAG. The techniques developed here also may be extended to investigate the functional roles of other brainstem nuclei.


Experimental Neurology | 2010

Anti-inflammatory treatment in AD mice protects against neuronal pathology

Ji-Kyung Choi; Bruce G. Jenkins; Isabel Carreras; Sukru Kaymakcalan; Kerry Cormier; Neil W. Kowall; Alpaslan Dedeoglu

Prior studies suggest that non-steroidal anti-inflammatory drugs (NSAIDs) may lower the incidence of Alzheimers disease (AD) and delay onset or slow progression of symptoms in mouse models of AD. We examined the effects of chronic NSAID treatment in order to determine which elements of the pathological features might be ameliorated. We compared the effects of the NSAIDs ibuprofen and celecoxib on immunohistological and neurochemical markers at two different ages in APPxPS1 mice using measurements of amyloid plaque deposition, Abeta peptide levels, and neurochemical profiles using magnetic resonance spectroscopy (MRS). At 6 months of age, few neurochemical changes were observed between PSAPP mice and WT mice using MRS. Ibuprofen, but not celecoxib, treatment significantly decreased the Abeta(42/40) ratio in frontal cortex at 6 months, but overall amyloid plaque burden was unchanged. Consistent with prior findings in mouse models, at 17 months of age, there was a decrease in the neuronal markers NAA and glutamate and an increase in the astrocytic markers glutamine and myo-inositol in AD mice compared to WT. Ibuprofen provided significant protection against NAA and glutamate loss. Neither of the drugs significantly affected myo-inositol or glutamine levels. Both ibuprofen and celecoxib lowered plaque burden without a significant effect on Abeta(1-42) levels. NAA levels significantly correlated with plaque burden. These results suggest that selective NSAIDs (ibuprofen and possibly celecoxib) treatment can protect against the neuronal pathology.


Developmental Neuroscience | 2010

Pharmacologic Neuroimaging of the Ontogeny of Dopamine Receptor Function

Yin-Ching I. Chen; Ji-Kyung Choi; Haibo Xu; Jiaqian Ren; Susan L. Andersen; Bruce G. Jenkins

Characterization of the ontogeny of the cerebral dopaminergic system is crucial for gaining a greater understanding of normal brain development and its alterations in response to drugs of abuse or conditions such as attention-deficit hyperactivity disorder. Pharmacological MRI (phMRI) was used to determine the response to dopamine transporter (DAT) blockers cocaine and methylphenidate (MPH), the dopamine releaser D-amphetamine (AMPH), the selective D1 agonist dihydrexidine, and the D2/D3 agonist quinpirole in young (<30 days old) and adult (>60 days old) rats. In adult rats, cocaine (0.5 mg/kg i.v.) or MPH (2 mg/kg) induced primarily positive cerebral blood volume (rCBV) changes in the dopaminergic circuitry, but negative rCBV changes in the young animals. Microdialysis measurements in the striatum showed that young rats have a smaller increase in extracellular dopamine in response to cocaine than adults. The young rats showed little rCBV response to the selective D1 agonist dihydrexidine in contrast to robust rCBV increases observed in the adults, whereas there was a similar negative rCBV response in the young and adult rats to the D2 agonist quinpirole. We also performed a meta-analysis of literature data on the development of D1 and D2 receptors and the DAT. These data suggest a predominance of D2-like over D1-like function between 20 and 30 days of age. These combined results suggested that the dopamine D1 receptor is functionally inhibited at young age.


Brain Research | 2010

Moderate exercise delays the motor performance decline in a transgenic model of ALS

Isabel Carreras; Sinan Yuruker; Nurgul Aytan; Lokman Hossain; Ji-Kyung Choi; Bruce G. Jenkins; Neil W. Kowall; Alpaslan Dedeoglu

The relationship between exercise and amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder characterized by motor neuron loss, rapidly progressive weakness and early death has been controversial. We studied the effect of a high (HEX) and moderate-level exercise (MEX) on body weight, motor performance and motor neuron counts in the ventral horn of spinal cords in a transgenic mouse model of ALS (G93A-SOD1) that overexpresses a mutated form of the human SOD1 gene that is a cause of familial ALS. These transgenic mice show several similarities to the human disease, including rapid progressive motor weakness from 100 days of age and premature death at around 135 days of age. Mice were exposed to high or mid-level exercise of left sedentary (SED). At 70, 95 and 120 days of age, spinal cords were processed following euthanasia. Motor neurons larger than 15 mum in diameter were counted with a design-based stereological protocol using an optical fractionator probe in the ventral horn of different regions of the cord and compared to wild-type littermates. Moderate exercise delayed the onset of motor deficit by over a week. High exercise slightly but significantly hastened the onset of motor performance deficits. Motor neuron density in the lumbar cord was significantly higher in MEX group compared to SED at 95 days of age. These results show the beneficial effects of moderate exercise on the preservation of motor performance that correlates with higher motor neuron density in the ventral horn of the lumbar spinal cord in G93A mice.


Synapse | 2009

Dopaminergic response to graded dopamine concentration elicited by four amphetamine doses

Jiaqian Ren; Haibo Xu; Ji-Kyung Choi; Bruce G. Jenkins; Y. Iris Chen

We studied the metabolic responses to different DA concentrations elicited by four doses of D‐amphetamine (AMPH, 0, 0.25, 0.5, 1.0, or 3.0 mg/kg). We compared the degree of DA release (via microdialysis) with striatal cAMP activity and whole brain maps of cerebral blood volume (rCBV) changes (via pharmacological MRI, phMRI). Results: AMPH increased DA release in the caudate/putamen (CPu) and cAMP activity in the CPu, nucleus accumbens (NAc), and medial prefrontal cortex (mPFC) in a linear dose‐dependent manner (P < 0.0001). The cAMP data suggest that, postsynaptically, signal transduction induced by D1 receptor is stronger than that of D2 receptor at the higher doses (1–3 mg/kg). phMRI showed that, while higher doses of AMPH (3 mg/kg (n = 7) and 1 mg/kg (n = 6)) induced significant rCBV increases in the CPu and NAc, the degree of rCBV increase was much smaller with AMPH of 0.5 mg/kg (n = 6). In contrast, AMPH of 0.25 mg/kg (n = 8) induced significant rCBV decreases in the anteromedial CPu and NAc. The sign switch of rCBV in response to AMPH from low to high doses likely reflects the switching in the balance of D2/D3 stimulation vs. D1/D5 stimulation. In conclusion, degree of postsynaptic signal transduction is linearly correlated to the extracellular DA concentration. However, the presynaptic binding may dominate the overall DA innervation at the lower range of DA concentration. Synapse 63:764–772, 2009.

Collaboration


Dive into the Ji-Kyung Choi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabel Carreras

VA Boston Healthcare System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge