Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neil W. Kowall is active.

Publication


Featured researches published by Neil W. Kowall.


Brain | 2013

The spectrum of disease in chronic traumatic encephalopathy

Ann C. McKee; Thor D. Stein; Christopher J. Nowinski; Robert A. Stern; Daniel H. Daneshvar; Victor E. Alvarez; H. J. Lee; Garth F. Hall; Sydney M. Wojtowicz; Christine M. Baugh; David O. Riley; Caroline A. Kubilus; Kerry Cormier; Matthew A. Jacobs; Brett Martin; Carmela R. Abraham; Tsuneya Ikezu; Robert Ross Reichard; Benjamin Wolozin; Andrew E. Budson; Lee E. Goldstein; Neil W. Kowall; Robert C. Cantu

Chronic traumatic encephalopathy is a progressive tauopathy that occurs as a consequence of repetitive mild traumatic brain injury. We analysed post-mortem brains obtained from a cohort of 85 subjects with histories of repetitive mild traumatic brain injury and found evidence of chronic traumatic encephalopathy in 68 subjects: all males, ranging in age from 17 to 98 years (mean 59.5 years), including 64 athletes, 21 military veterans (86% of whom were also athletes) and one individual who engaged in self-injurious head banging behaviour. Eighteen age- and gender-matched individuals without a history of repetitive mild traumatic brain injury served as control subjects. In chronic traumatic encephalopathy, the spectrum of hyperphosphorylated tau pathology ranged in severity from focal perivascular epicentres of neurofibrillary tangles in the frontal neocortex to severe tauopathy affecting widespread brain regions, including the medial temporal lobe, thereby allowing a progressive staging of pathology from stages I-IV. Multifocal axonal varicosities and axonal loss were found in deep cortex and subcortical white matter at all stages of chronic traumatic encephalopathy. TAR DNA-binding protein 43 immunoreactive inclusions and neurites were also found in 85% of cases, ranging from focal pathology in stages I-III to widespread inclusions and neurites in stage IV. Symptoms in stage I chronic traumatic encephalopathy included headache and loss of attention and concentration. Additional symptoms in stage II included depression, explosivity and short-term memory loss. In stage III, executive dysfunction and cognitive impairment were found, and in stage IV, dementia, word-finding difficulty and aggression were characteristic. Data on athletic exposure were available for 34 American football players; the stage of chronic traumatic encephalopathy correlated with increased duration of football play, survival after football and age at death. Chronic traumatic encephalopathy was the sole diagnosis in 43 cases (63%); eight were also diagnosed with motor neuron disease (12%), seven with Alzheimers disease (11%), 11 with Lewy body disease (16%) and four with frontotemporal lobar degeneration (6%). There is an ordered and predictable progression of hyperphosphorylated tau abnormalities through the nervous system in chronic traumatic encephalopathy that occurs in conjunction with widespread axonal disruption and loss. The frequent association of chronic traumatic encephalopathy with other neurodegenerative disorders suggests that repetitive brain trauma and hyperphosphorylated tau protein deposition promote the accumulation of other abnormally aggregated proteins including TAR DNA-binding protein 43, amyloid beta protein and alpha-synuclein.


Journal of Neurochemistry | 2002

Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis.

Robert J. Ferrante; Susan E. Browne; Leslie A. Shinobu; Allen C. Bowling; M. Jay Baik; Usha MacGarvey; Neil W. Kowall; Robert H. Brown; M. Flint Beal

Abstract: Some cases of autosomal dominant familial amyotrophic lateral sclerosis (FALS) are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1), suggesting that oxidative damage may play a role in ALS pathogenesis. To further investigate the biochemical features of FALS and sporadic ALS (SALS), we examined markers of oxidative damage to protein, lipids, and DNA in motor cortex (Brodmann area 4), parietal cortex (Brodmann area 40), and cerebellum from control subjects, FALS patients with and without known SOD mutations, SALS patients, and disease controls (Picks disease, progressive supranuclear palsy, diffuse Lewy body disease). Protein carbonyl and nuclear DNA 8‐hydroxy‐2′‐deoxyguanosine (OH8dG) levels were increased in SALS motor cortex but not in FALS patients. Malondialdehyde levels showed no significant changes. Immunohistochemical studies showed increased neuronal staining for hemeoxygenase‐1, malondialdehyde‐modified protein, and OH8dG in both SALS and FALS spinal cord. These studies therefore provide further evidence that oxidative damage may play a role in the pathogenesis of neuronal degeneration in both SALS and FALS.


Nature Genetics | 2006

Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons.

Yevgenya Kraytsberg; Elena Kudryavtseva; Ann C. McKee; Changiz Geula; Neil W. Kowall; Konstantin Khrapko

Using a novel single-molecule PCR approach to quantify the total burden of mitochondrial DNA (mtDNA) molecules with deletions, we show that a high proportion of individual pigmented neurons in the aged human substantia nigra contain very high levels of mtDNA deletions. Molecules with deletions are largely clonal within each neuron; that is, they originate from a single deleted mtDNA molecule that has expanded clonally. The fraction of mtDNA deletions is significantly higher in cytochrome c oxidase (COX)-deficient neurons than in COX-positive neurons, suggesting that mtDNA deletions may be directly responsible for impaired cellular respiration.


Science Translational Medicine | 2012

Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model

Lee E. Goldstein; Andrew Fisher; Chad Tagge; Xiao-lei Zhang; Libor Velíšek; John Sullivan; Chirag Upreti; Jonathan M. Kracht; Maria Ericsson; Mark Wojnarowicz; Cezar Goletiani; Giorgi Maglakelidze; Noel Casey; Juliet A. Moncaster; Olga Minaeva; Robert D. Moir; Christopher J. Nowinski; Robert A. Stern; Robert C. Cantu; James Geiling; Jan Krzysztof Blusztajn; Benjamin Wolozin; Tsuneya Ikezu; Thor D. Stein; Andrew E. Budson; Neil W. Kowall; David Chargin; Andre Sharon; Sudad Saman; Garth F. Hall

Blast exposure is associated with chronic traumatic encephalopathy, impaired neuronal function, and persistent cognitive deficits in blast-exposed military veterans and experimental animals. Blast Brain: An Invisible Injury Revealed Traumatic brain injury (TBI) is the “signature” injury of the conflicts in Afghanistan and Iraq and is associated with psychiatric symptoms and long-term cognitive disability. Recent estimates indicate that TBI may affect 20% of the 2.3 million U.S. servicemen and women deployed since 2001. Chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disorder reported in athletes with multiple concussions, shares clinical features with TBI in military personnel exposed to explosive blast. However, the connection between TBI and CTE has not been explored in depth. In a new study, Goldstein et al. investigate this connection in the first case series of postmortem brains from U.S. military veterans with blast exposure and/or concussive injury. They report evidence for CTE neuropathology in the military veteran brains that is similar to that observed in the brains of young amateur American football players and a professional wrestler. The investigators developed a mouse model of blast neurotrauma that mimics typical blast conditions associated with military blast injury and discovered that blast-exposed mice also demonstrate CTE neuropathology, including tau protein hyperphosphorylation, myelinated axonopathy, microvascular damage, chronic neuroinflammation, and neurodegeneration. Surprisingly, blast-exposed mice developed CTE neuropathology within 2 weeks after exposure to a single blast. In addition, the neuropathology was accompanied by functional deficits, including slowed axonal conduction, reduced activity-dependent long-term synaptic plasticity, and impaired spatial learning and memory that persisted for 1 month after exposure to a single blast. The investigators then showed that blast winds with velocities of more than 330 miles/hour—greater than the most intense wind gust ever recorded on earth—induced oscillating head acceleration of sufficient intensity to injure the brain. The researchers then demonstrated that blast-induced learning and memory deficits in the mice were reduced by immobilizing the head during blast exposure. These findings provide a direct connection between blast TBI and CTE and indicate a primary role for blast wind–induced head acceleration in blast-related neurotrauma and its aftermath. This study also validates a new blast neurotrauma mouse model that will be useful for developing new diagnostics, therapeutics, and rehabilitative strategies for treating blast-related TBI and CTE. Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory.


Journal of Neuropathology and Experimental Neurology | 2010

TDP-43 Proteinopathy and Motor Neuron Disease in Chronic Traumatic Encephalopathy

Ann C. McKee; Brandon E. Gavett; Robert A. Stern; Christopher J. Nowinski; Robert C. Cantu; Neil W. Kowall; Daniel P. Perl; E. Tessa Hedley-Whyte; Bruce H. Price; Christopher P. Sullivan; Peter J. Morin; H. J. Lee; Caroline A. Kubilus; Daniel H. Daneshvar; Megan Wulff; Andrew E. Budson

Epidemiological evidence suggests that the incidence of amyotrophic lateral sclerosis is increased in association with head injury. Repetitive head injury is also associated with the development of chronic traumatic encephalopathy (CTE), a tauopathy characterized by neurofibrillary tangles throughout the brain in the relative absence of &bgr;-amyloid deposits. We examined 12 cases of CTE and, in 10, found a widespread TAR DNA-binding protein of approximately 43kd (TDP-43) proteinopathy affecting the frontal and temporal cortices, medial temporal lobe, basal ganglia, diencephalon, and brainstem. Three athletes with CTE also developed a progressive motor neuron disease with profound weakness, atrophy, spasticity, and fasciculations several years before death. In these 3 cases, there were abundant TDP-43-positive inclusions and neurites in the spinal cord in addition to tau neurofibrillary changes, motor neuron loss, and corticospinal tract degeneration. The TDP-43 proteinopathy associated with CTE is similar to that found in frontotemporal lobar degeneration with TDP-43 inclusions, in that widespread regions of the brain are affected. Akin to frontotemporal lobar degeneration with TDP-43 inclusions, in some individuals with CTE, the TDP-43 proteinopathy extends to involve the spinal cord and is associated with motor neuron disease. This is the first pathological evidence that repetitive head trauma experienced in collision sports might be associated with the development of a motor neuron disease.


Journal of the American Geriatrics Society | 2003

Influence of executive function on locomotor function: divided attention increases gait variability in Alzheimer's disease

Pamela L. Sheridan; Judi Solomont; Neil W. Kowall; Jeffrey M. Hausdorff

Objectives: To evaluate how cognitive function and divided attention affect gait in Alzheimers disease (AD).


Journal of Neurochemistry | 1993

Age-Dependent Vulnerability of the Striatum to the Mitochondrial Toxin 3-Nitropropionic Acid

Emmanuel Brouillet; Bruce G. Jenkins; Bradley T. Hyman; Robert J. Ferrante; Neil W. Kowall; Rachana Srivastava; Deborah Samanta Roy; Bruce R. Rosen; M. Flint Beal

Abstract: The mechanisms of delayed onset and cell death in Huntingtons disease (HD) are unknown. One possibility is that a genetic defect in energy metabolism may result in slow excitotoxic neuronal death. Therefore, we examined the effects of age on striatal lesions produced by local administration of the mitochondrial toxin 3‐nitropropionic acid in rats. In vivo chemical shift magnetic resonance imaging showed marked increases in striatal lactate concentrations that significantly correlated with increasing age. Histologic and neurochemical studies showed a striking age dependence of the lesions, with 4‐ and 12‐month‐old animals being much more susceptible than 1‐month‐old animals. Continuous systemic administration of low doses of 3‐nitropropionic acid for 1 month resulted in striatal lesions showing growth‐related changes in dendrites of striatal spiny neurons using the Golgi technique. These results show that a known mitochondrial toxin can produce selective axon‐sparing striatal lesions showing both the age dependence and striatal spiny neuron dendritic changes that characterize HD.


Journal of Neurochemistry | 2002

Involvement of free radicals in excitotoxicity in vivo

Jörg B. Schulz; D. Ross Henshaw; Donald F. Siwek; Bruce G. Jenkins; Robert J. Ferrante; P. Ben Cipolloni; Neil W. Kowall; Bruce R. Rosen; M. Flint Beal

Abstract: Recent evidence has linked excitotoxicity with the generation of free radicals. We examined whether free radical spin traps can attenuate excitotoxic lesions in vivo. Pretreatment with N‐tert‐butyl‐α‐(2‐sulfophenyl)‐nitrone (S‐PBN) significantly attenuated striatal excitotoxic lesions in rats produced by N‐methyl‐d‐aspartate (NMDA), kainic acid, and α‐amino‐3‐hydroxy‐5‐methyl‐isoxazole‐4‐propionic acid (AMPA). In a similar manner, striatal lesions produced by 1‐methyl‐4‐phenylpyridinium (MPP+), malonate, and 3‐acetylpyridine were significantly attenuated by either S‐PBN or α‐phenyl‐N‐tert‐butylnitrone (PBN) treatment. Administration of S‐PBN in combination with the NMDA antagonist MK‐801 produced additive effects against malonate and 3‐acetylpyridine toxicity. Malonate injections resulted in increased production of hydroxyl free radicals (•OH) as assessed by the conversion of salicylate to 2,3‐ and 2,5‐dihydroxybenzoic acid (DHBA). This increase was significantly attenuated by S‐PBN, consistent with a free radical scavenging effect. S‐PBN had no effects on malonate‐induced ATP depletions and had no significant effect on spontaneous striatal electrophysiologic activity. These results provide the first direct in vivo evidence for the involvement of free radicals in excitotoxicity and suggest that antioxidants may be useful in treating neurologic illnesses in which excitotoxic mechanisms have been implicated.


Neurology | 2008

Protective effects of NSAIDs on the development of Alzheimer disease

Steven C. Vlad; Donald R. Miller; Neil W. Kowall; David T. Felson

Background: Nonsteroidal anti-inflammatory drugs (NSAIDs) may protect against Alzheimer disease (AD), but observational studies and trials have offered contradictory results. Prior studies have also been relatively short and small. We examined the effects on AD risk of NSAID use for >5 years and of NSAIDs that suppress formation of Aβ1-42 amyloid in a large health care database. Methods: Cases were veterans aged 55 years and older with incident AD using the US Veterans Affairs Health Care system. Matched controls were drawn from the same population. NSAID exposure was categorized into seven time periods: no use, ≤1 year, >1 but ≤2 years, and so on. Using conditional logistic regression, adjusted for race and comorbidities, we tested the association between AD development and the use of 1) any NSAID, 2) any NSAID excluding nonacetylated salicylates, 3) each NSAID class, 4) each individual NSAID, and 5) Aβ1-42-suppressing NSAIDs. Results: We identified 49,349 cases and 196,850 controls. Compared with no NSAID use, the adjusted odds ratios for AD among NSAID users decreased from 0.98 for ≤1 year of use (95% CI 0.95–1.00) to 0.76 for >5 years of use (0.68–0.85). For users of ibuprofen, it decreased from 1.03 (1.00–1.06) to 0.56 (0.42–0.75). Effects of other NSAID classes and individual NSAIDs were inconsistent. There was no difference between a group of Aβ1-42-suppressing NSAIDs and others. Discussion: Long-term nonsteroidal anti-inflammatory drug (NSAID) use was protective against Alzheimer disease. Findings were clearest for ibuprofen. Aβ1-42-suppressing NSAIDs did not differ from others.


Journal of Neuropathology and Experimental Neurology | 1987

Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington's disease

Robert J. Ferrante; Neil W. Kowall; M. Flint Beal; Joseph B. Martin; Edward D. Bird; Edward P. Richardson

We have previously found that a biochemically distinct subset of neurons, containing nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-4), is selectively resistant to the degenerative process that affects the striatum in Hunting-tons disease (HD). We report the morphologic and histochemical characteristics of these striatal neurons and their distribution with respect to the histochemical compartments as defined by acetylcholinesterase (AChE) activity. Sections of striatum were stained histochemically for NADPH-d and AChE and immunocytochemically for somatostatin and neuropeptide Y-like immunoreactivity. The diaphorase end-product was contained within medium-sized neurons which corresponded morphologically to a category of aspiny interneurons. Combined techniques showed that NADPH-d, somatostatin, and neuropeptide Y coexisted within the same neurons in controls and patients with HD. The density of these neurons was greater in the ventral putamen and the nucleus accumbens than in the remainder of the striatum. The distinctive AChE pattern of high and low enzyme activity was altered in HD. The AChE-rich matrix zone was markedly reduced in size, while the total area of zones of low enzyme activity was not different from that found in control striatum. The relation between these AChE chemical compartments and the distribution of preserved diaphorase neurons remained intact; NADPH-d neurons were predominantly observed in the matrix zone.

Collaboration


Dive into the Neil W. Kowall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge