Ji Min Kim
Pohang University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ji Min Kim.
Scientific Reports | 2013
Ho Seon Ahn; Ji Min Kim; Chibeom Park; Ji-Wook Jang; Jae Sung Lee; Hyungdae Kim; Massoud Kaviany; Moo Hwan Kim
We report a novel boiling heat transfer (NBHT) in reduced graphene oxide (RGO) suspended in water (RGO colloid) near critical heat flux (CHF), which is traditionally the dangerous limitation of nucleate boiling heat transfer because of heater failure. When the heat flux reaches the maximum value (CHF) in RGO colloid pool boiling, the wall temperature increases gradually and slowly with an almost constant heat flux, contrary to the rapid wall temperature increase found during water pool boiling. The gained time by NBHT would provide the safer margin of the heat transfer and the amazing impact on the thermal system as the first report of graphene application. In addition, the CHF and boiling heat transfer performance also increase. This novel boiling phenomenon can effectively prevent heater failure because of the role played by the self-assembled three-dimensional foam-like graphene network (SFG).
Scientific Reports | 2013
Ho Seon Ahn; Ji-Wook Jang; Minsu Seol; Ji Min Kim; Dong-Jin Yun; Chibeom Park; Hyungdae Kim; Duck Hyun Youn; Jae Young Kim; Gunyeop Park; Su Cheong Park; Jin Man Kim; Dong In Yu; Kijung Yong; Moo Hwan Kim; Jae Sung Lee
Self-assembled foam-like graphene (SFG) structures were formed using a simple nucleate boiling method, which is governed by the dynamics of bubble generation and departure in the graphene colloid solution. The conductivity and sheet resistance of the calcined (400°C) SFG film were 11.8 S·cm–1 and 91.2 Ω□−1, respectively, and were comparable to those of graphene obtained by chemical vapor deposition (CVD) (~10 S·cm–1). The SFG structures can be directly formed on any substrate, including transparent conductive oxide (TCO) glasses, metals, bare glasses, and flexible polymers. As a potential application, SFG formed on fluorine-doped tin oxide (FTO) exhibited a slightly better overall efficiency (3.6%) than a conventional gold electrode (3.4%) as a cathode of quantum dot sensitized solar cells (QDSSCs).
Scientific Reports | 2015
Ho Seon Ahn; Jin Man Kim; TaeJoo Kim; Su Cheong Park; Ji Min Kim; Young-Jae Park; Dong In Yu; Kyoung Won Hwang; HangJin Jo; Hyun Sun Park; Hyungdae Kim; Moo Hwan Kim
Boiling heat transfer (BHT) is a particularly efficient heat transport method because of the latent heat associated with the process. However, the efficiency of BHT decreases significantly with increasing wall temperature when the critical heat flux (CHF) is reached. Graphene has received much recent research attention for applications in thermal engineering due to its large thermal conductivity. In this study, graphene films of various thicknesses were deposited on a heated surface, and enhancements of BHT and CHF were investigated via pool-boiling experiments. In contrast to the well-known surface effects, including improved wettability and liquid spreading due to micron- and nanometer-scale structures, nanometer-scale folded edges of graphene films provided a clue of BHT improvement and only the thermal conductivity of the graphene layer could explain the dependence of the CHF on the thickness. The large thermal conductivity of the graphene films inhibited the formation of hot spots, thereby increasing the CHF. Finally, the provided empirical model could be suitable for prediction of CHF.
Journal of Heat Transfer-transactions of The Asme | 2017
Ji Min Kim; Ji Hoon Kim; Moo Hwan Kim; Massoud Kaviany; Ho Seon Ahn
The nanocapillarity phenomenon involves ultralow frictional flow of water molecules through nanoscale channels, and here we study this using exceptionally large number of nanochannels within graphene oxide (GO) laminates. The nanoconfined water molecules in GO nanochannels form square lattice (as in the ice bilayer), which melts and jumps across the channels, similar to slip flow, with mean speed of the order of 1 m/s. This ease of liquid spreading in GO laminate is used to delay the critical heat flux (CHF) phenomenon in water pool boiling, by preventing formation/growth of dry spots. The water nanocapillarity speed is derived based on the measured water penetration flux, and the CHF enhancement (up to 140%) is demonstrated on a 1-lm-thick GO laminate. The GO laminate offers efficient surface modifications for increased transport efficiency (and safety margin) of pool boiling heat transfer systems. [DOI: 10.1115/1.4036282]
Experimental Thermal and Fluid Science | 2012
Ho Seon Ahn; Gunyeop Park; Ji Min Kim; Joonwon Kim; Moo Hwan Kim
Carbon | 2013
Ho Seon Ahn; Hyungmo Kim; Ji Min Kim; Su Cheong Park; Jin Man Kim; Joonwon Kim; Moo Hwan Kim
International Journal of Heat and Mass Transfer | 2014
Ho Seon Ahn; Ji Min Kim; Massoud Kaviany; Moo Hwan Kim
International Journal of Heat and Mass Transfer | 2013
Ho Seon Ahn; Ji Min Kim; Moo Hwan Kim
International Journal of Heat and Mass Transfer | 2014
Ji Min Kim; TaeJoo Kim; Jongyul Kim; Moo Hwan Kim; Ho Seon Ahn
International Journal of Heat and Mass Transfer | 2014
Ho Seon Ahn; Ji Min Kim; Massoud Kaviany; Moo Hwan Kim