Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where a Ji is active.

Publication


Featured researches published by a Ji.


Genomics, Proteomics & Bioinformatics | 2003

A Genome Sequence of Novel SARS-CoV Isolates: the Genotype, GD-Ins29, Leads to a Hypothesis of Viral Transmission in South China

E’de Qin; Xionglei He; Wei Tian; Yong Liu; Wei Li; Jie Wen; Jingqiang Wang; Baochang Fan; Qingfa Wu; Guohui Chang; Wuchun Cao; Z. Y. Xu; Ruifu Yang; Jing Wang; Man Yu; Yan Li; Jing Xu; Bingyin Si; Yongwu Hu; Wenming Peng; Lin Tang; Tao Jiang; Jianping Shi; Jia Ji; Yu Zhang; Jia Ye; Cui’e Wang; Yujun Han; Jun Zhou; Yajun Deng

We report a complete genomic sequence of rare isolates (minor genotype) of the SARS-CoV from SARS patients in Guangdong, China, where the first few cases emerged. The most striking discovery from the isolate is an extra 29-nucleotide sequence located at the nucleotide positions between 27,863 and 27,864 (referred to the complete sequence of BJ01) within an overlapped region composed of BGI-PUP5 (BGI-postulated uncharacterized protein 5) and BGI-PUP6 upstream of the N (nucleocapsid) protein. The discovery of this minor genotype, GD-Ins29, suggests a significant genetic event and differentiates it from the previously reported genotype, the dominant form among all sequenced SARS-CoV isolates. A 17-nt segment of this extra sequence is identical to a segment of the same size in two human mRNA sequences that may interfere with viral genome replication and transcription in the cytosol of the infected cells. It provides a new avenue for the exploration of the virus-host interaction in viral evolution, host pathogenesis, and vaccine development.


Genomics, Proteomics & Bioinformatics | 2003

The C-terminal portion of the nucleocapsid protein demonstrates SARS-CoV antigenicity.

Guozhen Liu; Shaohui Hu; Yongwu Hu; Peng Chen; Jianning Yin; Jie Wen; Jingqiang Wang; Liang Lin; Jinxiu Liu; Bo You; Ye Yin; Shuting Li; Hao Wang; Yan Ren; Jia Ji; Xiaoqian Zhao; Yongqiao Sun; Xiaowei Zhang; Jianqiu Fang; Jian Wang; Siqi Liu; Jun Yu; Heng Zhu; Huanming Yang

In order to develop clinical diagnostic tools for rapid detection of SARS-CoV (severe acute respiratory syndrome-associated coronavirus) and to identify candidate proteins for vaccine development, the C-terminal portion of the nucleocapsid (NC) gene was amplified using RT-PCR from the SARS-CoV genome, cloned into a yeast expression vector (pEGH), and expressed as a glutathione S-transferase (GST) and Hisx6 double-tagged fusion protein under the control of an inducible promoter. Western analysis on the purified protein confirmed the expression and purification of the NC fusion proteins from yeast. To determine its antigenicity, the fusion protein was challenged with serum samples from SARS patients and normal controls. The NC fusion protein demonstrated high antigenicity with high specificity, and therefore, it should have great potential in designing clinical diagnostic tools and provide useful information for vaccine development.


Genomics, Proteomics & Bioinformatics | 2003

The Structural Characterization and Antigenicity of the S Protein of SARS-CoV

Jingxiang Li; Chunqing Luo; Yajun Deng; Yujun Han; Lin Tang; Jing Wang; Jia Ji; Jia Ye; Fanbo Jiang; Zhao Xu; Wei Tong; Wei Wei; Qingrun Zhang; Shengbin Li; Wei Li; Hongyan Li; Yudong Li; Wei Dong; Jian Wang; Shengli Bi; Huanming Yang

The corona-like spikes or peplomers on the surface of the virion under electronic microscope are the most striking features of coronaviruses. The S (spike) protein is the largest structural protein, with 1,255 amino acids, in the viral genome. Its structure can be divided into three regions: a long N-terminal region in the exterior, a characteristic transmembrane (TM) region, and a short C-terminus in the interior of a virion. We detected fifteen substitutions of nucleotides by comparisons with the seventeen published SARS-CoV genome sequences, eight (53.3%) of which are non-synonymous mutations leading to amino acid alternations with predicted physiochemical changes. The possible antigenic determinants of the S protein are predicted, and the result is confirmed by ELISA (enzyme-linked immunosorbent assay) with synthesized peptides. Another profound finding is that three disulfide bonds are defined at the C-terminus with the N-terminus of the E (envelope) protein, based on the typical sequence and positions, thus establishing the structural connection with these two important structural proteins, if confirmed. Phylogenetic analysis reveals several conserved regions that might be potent drug targets.


Genomics, Proteomics & Bioinformatics | 2003

The structure analysis and antigenicity study of the N protein of SARS-CoV.

Jingqiang Wang; Jia Ji; Jia Ye; Xiaoqian Zhao; Jie Wen; Wei Li; Jianfei Hu; Dawei Li; Min Sun; Haipan Zeng; Yongwu Hu; Xiangjun Tian; Xuehai Tan; Ningzhi Xu; Changqing Zeng; Jian Wang; Shengli Bi; Huanming Yang

The Coronaviridae family is characterized by a nucleocapsid that is composed of the genome RNA molecule in combination with the nucleoprotein (N protein) within a virion. The most striking physiochemical feature of the N protein of SARS-CoV is that it is a typical basic protein with a high predicted pI and high hydrophilicity, which is consistent with its function of binding to the ribophosphate backbone of the RNA molecule. The predicted high extent of phosphorylation of the N protein on multiple candidate phosphorylation sites demonstrates that it would be related to important functions, such as RNA-binding and localization to the nucleolus of host cells. Subsequent study shows that there is an SR-rich region in the N protein and this region might be involved in the protein-protein interaction. The abundant antigenic sites predicted in the N protein, as well as experimental evidence with synthesized polypeptides, indicate that the N protein is one of the major antigens of the SARS-CoV. Compared with other viral structural proteins, the low variation rate of the N protein with regards to its size suggests its importance to the survival of the virus.


Genomics, Proteomics & Bioinformatics | 2003

Complete Genome Sequences of the SARS-CoV: the BJ Group (Isolates BJ01-BJ04)

Shengli Bi; E’de Qin; Z. Y. Xu; Wei Li; Jing Wang; Yongwu Hu; Yong Liu; Shumin Duan; Jianfei Hu; Yujun Han; Jing Xu; Yan Li; Yao Yi; Yongdong Zhou; Wei Lin; Jie Wen; Hong Xu; Ruan Li; Zizhang Zhang; Haiyan Sun; Jingui Zhu; Man Yu; Baochang Fan; Qingfa Wu; Lin Tang; Bao’an Yang; Guoqing Li; Wenming Peng; Wenjie Li; Tao Jiang

Beijing has been one of the epicenters attacked most severely by the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) since the first patient was diagnosed in one of the city’s hospitals. We now report complete genome sequences of the BJ Group, including four isolates (Isolates BJ01, BJ02, BJ03, and BJ04) of the SARS-CoV. It is remarkable that all members of the BJ Group share a common haplotype, consisting of seven loci that differentiate the group from other isolates published to date. Among 42 substitutions uniquely identified from the BJ group, 32 are non-synonymous changes at the amino acid level. Rooted phylogenetic trees, proposed on the basis of haplotypes and other sequence variations of SARS-CoV isolates from Canada, USA, Singapore, and China, gave rise to different paradigms but positioned the BJ Group, together with the newly discovered GD01 (GD-Ins29) in the same clade, followed by the H-U Group (from Hong Kong to USA) and the H-T Group (from Hong Kong to Toronto), leaving the SP Group (Singapore) more distant. This result appears to suggest a possible transmission path from Guangdong to Beijing/Hong Kong, then to other countries and regions.


Genomics, Proteomics & Bioinformatics | 2003

Genome Organization of the SARS-CoV

Jing Xu; Jianfei Hu; Jing Wang; Yujun Han; Yongwu Hu; Jie Wen; Yan Li; Jia Ji; Jia Ye; Zizhang Zhang; Wei Wei; Songgang Li; Jun Wang; Jian Wang; Jun Yu; Huanming Yang

Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available or developed by ourselves. Totally, 21 open reading frames (ORFs) of genes or putative uncharacterized proteins (PUPs) were predicted. Seven PUPs had not been reported previously, and two of them were predicted to contain transmembrane regions. Eight ORFs partially overlapped with or embedded into those of known genes, revealing that the SARS-CoV genome is a small and compact one with overlapped coding regions. The most striking discovery is that an ORF locates on the minus strand. We have also annotated non-coding regions and identified the transcription regulating sequences (TRS) in the intergenic regions. The analysis of TRS supports the minus strand extending transcription mechanism of coronavirus. The SNP analysis of different isolates reveals that mutations of the sequences do not affect the prediction results of ORFs.


Genomics, Proteomics & Bioinformatics | 2003

The E Protein Is a Multifunctional Membrane Protein of SARS-CoV

Qingfa Wu; Yilin Zhang; Hong Lu; Jing Wang; Ximiao He; Yong Liu; Chen Ye; Wei Lin; Jianfei Hu; Jia Ji; Jing Xu; Jia Ye; Yongwu Hu; Wenjun Chen; Songgang Li; Jun Wang; Jian Wang; Shengli Bi; Huanming Yang

The E (envelope) protein is the smallest structural protein in all coronaviruses and is the only viral structural protein in which no variation has been detected. We conducted genome sequencing and phylogenetic analyses of SARS-CoV. Based on genome sequencing, we predicted the E protein is a transmembrane (TM) protein characterized by a TM region with strong hydrophobicity and α-helix conformation. We identified a segment (NH2-_L-Cys-A-Y-Cys-Cys-N_-COOH) in the carboxyl-terminal region of the E protein that appears to form three disulfide bonds with another segment of corresponding cysteines in the carboxyl-terminus of the S (spike) protein. These bonds point to a possible structural association between the E and S proteins. Our phylogenetic analyses of the E protein sequences in all published coronaviruses place SARS-CoV in an independent group in Coronaviridae and suggest a non-human animal origin.


Genomics, Proteomics & Bioinformatics | 2003

The R protein of SARS-CoV: analyses of structure and function based on four complete genome sequences of isolates BJ01-BJ04.

Z. Y. Xu; Haiqing Zhang; Xiangjun Tian; Jia Ji; Wei Li; Yan Li; Wei Tian; Yujun Han; Lili Wang; Zizhang Zhang; Jing Xu; Wei Wei; Jingui Zhu; Haiyan Sun; Xiaowei Zhang; Jun Zhou; Songgang Li; Jun Wang; Jian Wang; Shengli Bi; Huanming Yang

The R (replicase) protein is the uniquely defined non-structural protein (NSP) responsible for RNA replication, mutation rate or fidelity, regulation of transcription in coronaviruses and many other ssRNA viruses. Based on our complete genome sequences of four isolates (BJ01-BJ04) of SARS-CoV from Beijing, China, we analyzed the structure and predicted functions of the R protein in comparison with 13 other isolates of SARS-CoV and 6 other coronaviruses. The entire ORF (open-reading frame) encodes for two major enzyme activities, RNA-dependent RNA polymerase (RdRp) and proteinase activities. The R polyprotein undergoes a complex proteolytic process to produce 15 function-related peptides. A hydrophobic domain (HOD) and a hydrophilic domain (HID) are newly identified within NSP1. The substitution rate of the R protein is close to the average of the SARS-CoV genome. The functional domains in all NSPs of the R protein give different phylogenetic results that suggest their different mutation rate under selective pressure. Eleven highly conserved regions in RdRp and twelve cleavage sites by 3CLP (chymotrypsin-like protein) have been identified as potential drug targets. Findings suggest that it is possible to obtain information about the phylogeny of SARS-CoV, as well as potential tools for drug design, genotyping and diagnostics of SARS.


Genomics, Proteomics & Bioinformatics | 2003

Evolution and variation of the SARS-CoV genome.

Jianfei Hu; Jing Wang; Jing Xu; Wei Li; Yujun Han; Yan Li; Jia Ji; Jia Ye; Zhao Xu; Zizhang Zhang; Wei Wei; Songgang Li; Jun Wang; Jian Wang; Jun Yu; Huanming Yang

Knowledge of the evolution of pathogens is of great medical and biological significance to the prevention, diagnosis, and therapy of infectious diseases. In order to understand the origin and evolution of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus), we collected complete genome sequences of all viruses available in GenBank, and made comparative analyses with the SARS-CoV. Genomic signature analysis demonstrates that the coronaviruses all take the TGTT as their richest tetranucleotide except the SARS-CoV. A detailed analysis of the forty-two complete SARS-CoV genome sequences revealed the existence of two distinct genotypes, and showed that these isolates could be classified into four groups. Our manual analysis of the BLASTN results demonstrates that the HE (hemagglutinin-esterase) gene exists in the SARS-CoV, and many mutations made it unfamiliar to us.

Collaboration


Dive into the a Ji's collaboration.

Top Co-Authors

Avatar

Huanming Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jian Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jia Ye

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar

Jing Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jing Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongwu Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yujun Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Wen

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge