Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huanming Yang is active.

Publication


Featured researches published by Huanming Yang.


Nature Genetics | 2011

Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder.

Yaoting Gui; Guangwu Guo; Yi Huang; Xueda Hu; Aifa Tang; Shengjie Gao; Renhua Wu; Chao Chen; Xianxin Li; Liang Zhou; Minghui He; Zesong Li; Xiaojuan Sun; Wenlong Jia; Jinnong Chen; Shangming Yang; Fangjian Zhou; Xiaokun Zhao; Shengqing Wan; Rui Ye; Chaozhao Liang; Zhisheng Liu; Peide Huang; Chunxiao Liu; Hui Jiang; Yong Wang; Hancheng Zheng; Liang Sun; Xingwang Liu; Zhimao Jiang

Transitional cell carcinoma (TCC) is the most common type of bladder cancer. Here we sequenced the exomes of nine individuals with TCC and screened all the somatically mutated genes in a prevalence set of 88 additional individuals with TCC with different tumor stages and grades. In our study, we discovered a variety of genes previously unknown to be mutated in TCC. Notably, we identified genetic aberrations of the chromatin remodeling genes (UTX, MLL-MLL3, CREBBP-EP300, NCOR1, ARID1A and CHD6) in 59% of our 97 subjects with TCC. Of these genes, we showed UTX to be altered substantially more frequently in tumors of low stages and grades, highlighting its potential role in the classification and diagnosis of bladder cancer. Our results provide an overview of the genetic basis of TCC and suggest that aberration of chromatin regulation might be a hallmark of bladder cancer.


Science | 2014

Comparative genomics reveals insights into avian genome evolution and adaptation

Guojie Zhang; Cai Li; Qiye Li; Bo Li; Denis M. Larkin; Chul Hee Lee; Jay F. Storz; Agostinho Antunes; Matthew J. Greenwold; Robert W. Meredith; Qi Zhou; Luohao Xu; Zongji Wang; Pei Zhang; Haofu Hu; Wei Yang; Jiang Hu; Jin Xiao; Zhikai Yang; Yang Liu; Qiaolin Xie; Hao Yu; Jinmin Lian; Ping Wen; Fang Zhang; Hui Li; Yongli Zeng; Zijun Xiong; Shiping Liu; Zhiyong Huang

Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.


Nature Genetics | 2010

Genome-wide patterns of genetic variation among elite maize inbred lines

Jinsheng Lai; Ruiqiang Li; Xun Xu; Weiwei Jin; Mingliang Xu; Hainan Zhao; Zhongkai Xiang; Weibin Song; Kai Ying; Mei Zhang; Yinping Jiao; Peixiang Ni; Jianguo Zhang; Dong Li; Xiaosen Guo; Kaixiong Ye; Min Jian; Bo Wang; Huisong Zheng; Huiqing Liang; Xiuqing Zhang; Shoucai Wang; Shaojiang Chen; Jiansheng Li; Yan Fu; Nathan M. Springer; Huanming Yang; Jian Wang; Jing-Rui Dai; Jun Wang

We have resequenced a group of six elite maize inbred lines, including the parents of the most productive commercial hybrid in China. This effort uncovered more than 1,000,000 SNPs, 30,000 indel polymorphisms and 101 low-sequence-diversity chromosomal intervals in the maize genome. We also identified several hundred complete genes that show presence/absence variation among these resequenced lines. We discuss the potential roles of complementation of presence/absence variations and other deleterious mutations in contributing to heterosis. High-density SNP and indel polymorphism markers reported here are expected to be a valuable resource for future genetic studies and the molecular breeding of this important crop.


American Journal of Human Genetics | 2003

The Genetic Legacy of the Mongols

Tatiana Zerjal; Yali Xue; Giorgio Bertorelle; R. Spencer Wells; Weidong Bao; Suling Zhu; Raheel Qamar; Qasim Ayub; Aisha Mohyuddin; Songbin Fu; Li P; Nadira Yuldasheva; Ruslan Ruzibakiev; Jiujin Xu; Qunfang Shu; Ruofu Du; Huanming Yang; Elizabeth J. Z. Robinson; Tudevdagva Gerelsaikhan; Bumbein Dashnyam; S. Qasim Mehdi; Chris Tyler-Smith

We have identified a Y-chromosomal lineage with several unusual features. It was found in 16 populations throughout a large region of Asia, stretching from the Pacific to the Caspian Sea, and was present at high frequency: approximately 8% of the men in this region carry it, and it thus makes up approximately 0.5% of the world total. The pattern of variation within the lineage suggested that it originated in Mongolia approximately 1,000 years ago. Such a rapid spread cannot have occurred by chance; it must have been a result of selection. The lineage is carried by likely male-line descendants of Genghis Khan, and we therefore propose that it has spread by a novel form of social selection resulting from their behavior.


Nature Genetics | 2012

The yak genome and adaptation to life at high altitude

Qiang Qiu; Guojie Zhang; Tao Ma; Wubin Qian; Wang J; Zhiqiang Ye; Changchang Cao; Quanjun Hu; Jaebum Kim; Denis M. Larkin; Loretta Auvil; Boris Capitanu; Jian Ma; Harris A. Lewin; Xiaoju Qian; Yongshan Lang; Ran Zhou; Lizhong Wang; Kun Wang; Jinquan Xia; Shengguang Liao; Shengkai Pan; Xu Lu; Haolong Hou; Yan Wang; Xuetao Zang; Ye Yin; Hui Ma; Jian Zhang; Zhaofeng Wang

Domestic yaks (Bos grunniens) provide meat and other necessities for Tibetans living at high altitude on the Qinghai-Tibetan Plateau and in adjacent regions. Comparison between yak and the closely related low-altitude cattle (Bos taurus) is informative in studying animal adaptation to high altitude. Here, we present the draft genome sequence of a female domestic yak generated using Illumina-based technology at 65-fold coverage. Genomic comparisons between yak and cattle identify an expansion in yak of gene families related to sensory perception and energy metabolism, as well as an enrichment of protein domains involved in sensing the extracellular environment and hypoxic stress. Positively selected and rapidly evolving genes in the yak lineage are also found to be significantly enriched in functional categories and pathways related to hypoxia and nutrition metabolism. These findings may have important implications for understanding adaptation to high altitude in other animal species and for hypoxia-related diseases in humans.


Nature Genetics | 2013

Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation

Guangwu Guo; Xiaojuan Sun; Chao Chen; Song Wu; Peide Huang; Zesong Li; Michael Dean; Yi Huang; Wenlong Jia; Quan Zhou; Aifa Tang; Zuoquan Yang; Xianxin Li; Pengfei Song; Xiaokun Zhao; Rui Ye; Shiqiang Zhang; Zhao Lin; Mingfu Qi; Shengqing Wan; Liangfu Xie; Fan Fan; Michael L. Nickerson; Xiangjun Zou; Xueda Hu; Li Xing; Zhaojie Lv; Hongbin Mei; Shengjie Gao; Chaozhao Liang

Bladder cancer is one of the most common cancers worldwide, with transitional cell carcinoma (TCC) being the predominant form. Here we report a genomic analysis of TCC by both whole-genome and whole-exome sequencing of 99 individuals with TCC. Beyond confirming recurrent mutations in genes previously identified as being mutated in TCC, we identified additional altered genes and pathways that were implicated in TCC. Notably, we discovered frequent alterations in STAG2 and ESPL1, two genes involved in the sister chromatid cohesion and segregation (SCCS) process. Furthermore, we also detected a recurrent fusion involving FGFR3 and TACC3, another component of SCCS, by transcriptome sequencing of 42 DNA-sequenced tumors. Overall, 32 of the 99 tumors (32%) harbored genetic alterations in the SCCS process. Our analysis provides evidence that genetic alterations affecting the SCCS process may be involved in bladder tumorigenesis and identifies a new therapeutic possibility for bladder cancer.


Cell Stem Cell | 2012

Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression.

Linzhao Cheng; Nancy F. Hansen; Ling Zhao; Yutao Du; Chunlin Zou; Frank X. Donovan; Bin Kuan Chou; Guangyu Zhou; Shijie Li; Sarah N. Dowey; Zhaohui Ye; Settara C. Chandrasekharappa; Huanming Yang; James C. Mullikin; P. Paul Liu

The utility of induced pluripotent stem cells (iPSCs) as models to study diseases and as sources for cell therapy depends on the integrity of their genomes. Despite recent publications of DNA sequence variations in the iPSCs, the true scope of such changes for the entire genome is not clear. Here we report the whole-genome sequencing of three human iPSC lines derived from two cell types of an adult donor by episomal vectors. The vector sequence was undetectable in the deeply sequenced iPSC lines. We identified 1,058-1,808 heterozygous single-nucleotide variants (SNVs), but no copy-number variants, in each iPSC line. Six to twelve of these SNVs were within coding regions in each iPSC line, but ~50% of them are synonymous changes and the remaining are not selectively enriched for known genes associated with cancers. Our data thus suggest that episome-mediated reprogramming is not inherently mutagenic during integration-free iPSC induction.


PLOS ONE | 2010

Integrated Profiling of MicroRNAs and mRNAs: MicroRNAs Located on Xq27.3 Associate with Clear Cell Renal Cell Carcinoma

Liang Zhou; Jiahao Chen; Zhizhong Li; Xianxin Li; Xueda Hu; Yi Huang; Xiaokun Zhao; Chaozhao Liang; Yong Wang; Liang Sun; Min Shi; Xiaohong Xu; Feng Shen; Maoshan Chen; Zujing Han; Zhiyu Peng; Qingna Zhai; Jing Chen; Z. Zhang; Ruilin Yang; Jiongxian Ye; Zhichen Guan; Huanming Yang; Yaoting Gui; Jun Wang; Zhiming Cai; Xiuqing Zhang

Background With the advent of second-generation sequencing, the expression of gene transcripts can be digitally measured with high accuracy. The purpose of this study was to systematically profile the expression of both mRNA and miRNA genes in clear cell renal cell carcinoma (ccRCC) using massively parallel sequencing technology. Methodology The expression of mRNAs and miRNAs were analyzed in tumor tissues and matched normal adjacent tissues obtained from 10 ccRCC patients without distant metastases. In a prevalence screen, some of the most interesting results were validated in a large cohort of ccRCC patients. Principal Findings A total of 404 miRNAs and 9,799 mRNAs were detected to be differentially expressed in the 10 ccRCC patients. We also identified 56 novel miRNA candidates in at least two samples. In addition to confirming that canonical cancer genes and miRNAs (including VEGFA, DUSP9 and ERBB4; miR-210, miR-184 and miR-206) play pivotal roles in ccRCC development, promising novel candidates (such as PNCK and miR-122) without previous annotation in ccRCC carcinogenesis were also discovered in this study. Pathways controlling cell fates (e.g., cell cycle and apoptosis pathways) and cell communication (e.g., focal adhesion and ECM-receptor interaction) were found to be significantly more likely to be disrupted in ccRCC. Additionally, the results of the prevalence screen revealed that the expression of a miRNA gene cluster located on Xq27.3 was consistently downregulated in at least 76.7% of ∼50 ccRCC patients. Conclusions Our study provided a two-dimensional map of the mRNA and miRNA expression profiles of ccRCC using deep sequencing technology. Our results indicate that the phenotypic status of ccRCC is characterized by a loss of normal renal function, downregulation of metabolic genes, and upregulation of many signal transduction genes in key pathways. Furthermore, it can be concluded that downregulation of miRNA genes clustered on Xq27.3 is associated with ccRCC.


Current Biology | 2009

Human Y Chromosome Base-Substitution Mutation Rate Measured by Direct Sequencing in a Deep-Rooting Pedigree

Yali Xue; Qiuju Wang; Quan Long; Bee Ling Ng; Harold Swerdlow; John Burton; C. D. Skuce; Ruth Taylor; Zahra Abdellah; Yali Zhao; Daniel G. MacArthur; Michael A. Quail; Nigel P. Carter; Huanming Yang; Chris Tyler-Smith

Summary Understanding the key process of human mutation is important for many aspects of medical genetics and human evolution. In the past, estimates of mutation rates have generally been inferred from phenotypic observations or comparisons of homologous sequences among closely related species [1–3]. Here, we apply new sequencing technology to measure directly one mutation rate, that of base substitutions on the human Y chromosome. The Y chromosomes of two individuals separated by 13 generations were flow sorted and sequenced by Illumina (Solexa) paired-end sequencing to an average depth of 11× or 20×, respectively [4]. Candidate mutations were further examined by capillary sequencing in cell-line and blood DNA from the donors and additional family members. Twelve mutations were confirmed in ∼10.15 Mb; eight of these had occurred in vitro and four in vivo. The latter could be placed in different positions on the pedigree and led to a mutation-rate measurement of 3.0 × 10−8 mutations/nucleotide/generation (95% CI: 8.9 × 10−9–7.0 × 10−8), consistent with estimates of 2.3 × 10−8–6.3 × 10−8 mutations/nucleotide/generation for the same Y-chromosomal region from published human-chimpanzee comparisons [5] depending on the generation and split times assumed.


Genome Biology | 2014

Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation

Jian Xue; Xin Zhou; Chuan-Xi Zhang; Lili Yu; Hai-Wei Fan; Zhuo Wang; Hai-Jun Xu; Yu Xi; Zeng-Rong Zhu; Wen-Wu Zhou; Peng-Lu Pan; Bao-Ling Li; John K. Colbourne; Hiroaki Noda; Yoshitaka Suetsugu; Tetsuya Kobayashi; Yuan Zheng; Shanlin Liu; Rui Zhang; Yang Liu; Yadan Luo; Dongming Fang; Yan Chen; Dongliang Zhan; Xiaodan Lv; Yue Cai; Zhaobao Wang; Hai-Jian Huang; Ruo-Lin Cheng; Xue-Chao Zhang

BackgroundThe brown planthopper, Nilaparvata lugens, the most destructive pest of rice, is a typical monophagous herbivore that feeds exclusively on rice sap, which migrates over long distances. Outbreaks of it have re-occurred approximately every three years in Asia. It has also been used as a model system for ecological studies and for developing effective pest management. To better understand how a monophagous sap-sucking arthropod herbivore has adapted to its exclusive host selection and to provide insights to improve pest control, we analyzed the genomes of the brown planthopper and its two endosymbionts.ResultsWe describe the 1.14 gigabase planthopper draft genome and the genomes of two microbial endosymbionts that permit the planthopper to forage exclusively on rice fields. Only 40.8% of the 27,571 identified Nilaparvata protein coding genes have detectable shared homology with the proteomes of the other 14 arthropods included in this study, reflecting large-scale gene losses including in evolutionarily conserved gene families and biochemical pathways. These unique genomic features are functionally associated with the animal’s exclusive plant host selection. Genes missing from the insect in conserved biochemical pathways that are essential for its survival on the nutritionally imbalanced sap diet are present in the genomes of its microbial endosymbionts, which have evolved to complement the mutualistic nutritional needs of the host.ConclusionsOur study reveals a series of complex adaptations of the brown planthopper involving a variety of biological processes, that result in its highly destructive impact on the exclusive host rice. All these findings highlight potential directions for effective pest control of the planthopper.

Collaboration


Dive into the Huanming Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiuqing Zhang

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Jian Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Yu

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yutao Du

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xueda Hu

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

G. Vajta

Central Queensland University

View shared research outputs
Researchain Logo
Decentralizing Knowledge