Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jia-h Yu is active.

Publication


Featured researches published by Jia-h Yu.


Journal of the Atmospheric Sciences | 1994

Modes of Tropical Variability under Convective Adjustment and the Madden–Julian Oscillation. Part I: Analytical Theory

J. David Neelin; Jia-Yuh Yu

Abstract The interaction between the collective effects of cumulus convection and large-scale dynamics is examined using the Betts–Miller moist convective adjustment (MCA) parameterization in a linearized primitive equation model on an equatorial β plane. In Part I of this paper, an analytical approach to the eigenvalue problem is taken using perturbation expansions in the cumulus adjustment time, which is short compared to planetary dynamical time scales. The modes of tropical variability that arise under MCA are dominated by the presence of moist processes; some modes act to adjust the system rapidly toward a convectively adjusted state, while others evolve on time scales set by the large-scale dynamics subject to near-adjusted (quasi equilibrium) thermodynamical constraints. Of the latter, a single vertical mode stands out, which obeys special balances implied by the quasi-equilibrium constraints and is the only propagating deep convective mode. The propagation speed is determined by an internally defi...


Journal of the Atmospheric Sciences | 1998

Estimating the Gross Moist Stability of the Tropical Atmosphere

Jia-Yuh Yu; Chia Chou; J. David Neelin

Recent theoretical studies have indicated that large-scale circulation in deep convective regions evolves subject to an overall static stability—termed the gross moist stability—that takes into account both dry static stability and moist convective effects. The gross moist stability has been explicitly defined for a continuously stratified atmosphere under convective quasi-equilibrium constraints. A subsidiary quantity—the gross moisture stratification—measures the overall effectiveness in producing precipitation subject to these quasi-equilibrium constraints. These definitions are relevant in regions that experience deep convection sufficiently often; criteria based on climatological precipitation and maximum level of convection are used to define a domain of applicability. In this paper, 10-yr monthly mean rawinsonde data, and European Centre for Medium-Range Weather Forecasts (ECMWF) and National Meteorological Center (NMC) analyses are used to estimate the magnitude and horizontal distribution of these two quantities in the Tropics within the domain of applicability. The gross moist stability is found to be positive but much smaller than typical dry static stability values. Its magnitude varies modestly from 200 to 800 J kg21 and exhibits relatively little dependence on sea surface temperature (SST). These values correspond, for instance, to a phase speed change from 8 to 16 m s21 for the Madden‐Julian oscillation. The gross moisture stratification is larger and exhibits strong dependence on SST, varying from 1500 to 3500 J kg21 between cold and warm SST regions. A high degree of cancellation between effects of increasing low-level moisture and maximum level of convection, respectively, tends to keep the gross moist stability values relatively constant. Differences among the ECMWF and NMC analysis products and the rawinsonde data affect the estimate, but there is qualitative agreement. It is encouraging that reasonably robust estimates of a small, positive gross moist stability (as the difference between larger dry static stability and gross moisture stratification quantities) can be obtained. This helps justify use of small, constant moist phase speeds in some simple models of tropical circulation, although it also points out inconsistencies in how such models neglect variations in the height of convection.


Journal of Climate | 2003

Interannual Variability of the Western North Pacific Summer Monsoon: Differences between ENSO and Non-ENSO Years

Chia Chou; Jien-Yi Tu; Jia-Yuh Yu

Abstract The interannual variability of the western North Pacific (WNP) summer monsoon is examined for the non-ENSO, ENSO developing, and ENSO decaying years, respectively. The ENSO developing (decaying) year is defined as the year before (after) the mature phase of ENSO, and the non-ENSO year is defined as the year that is neither the ENSO developing year nor the ENSO decaying year. A strong (weak) WNP summer monsoon tends to occur during the El Nino (La Nina) developing year and a weak (strong) WNP summer monsoon tends to occur during the El Nino (La Nina) decaying year. In all non-ENSO, ENSO developing, and ENSO decaying years, the strong (weak) WNP summer monsoon is associated with the positive (negative) rainfall anomalies, cold (warm) sea surface temperature anomalies, warm (cold) upper-tropospheric temperature anomalies, low (high) surface pressure anomalies, and a low-level cyclonic (anticyclonic) circulation anomaly over the subtropical WNP. The 850-hPa wave train associated with the WNP and east...


Journal of the Atmospheric Sciences | 1994

Modes of Tropical Variability under Convective Adjustment and the Madden–Julian Oscillation. Part II: Numerical Results

Jia-Yuh Yu; J. David Neelin

Abstract Convective interaction with dynamics (CID) dictates the structure and behavior of the eigenmodes of the tropical atmosphere under moist convective adjustment (MCA) when the convective adjustment time scale, τc, is much smaller than dynamical time scales, as examined analytically in Part I. Here, the modes are reexamined numerically to include the effects of finite τc, again for a primitive equation model with the Betts-Miller MCA parameterization. The numerical results at planetary scales are consistent with the analytical approach, with two well-separated classes of vertical modes: one subset evolves at the cumulus time scale, while the other subset evolves at a time scale set by the large-scale dynamics. All modes are stable for homogeneous basic states in the presence of simple mechanical damping effects. Thus, there is no CISK at any scale under MCA. However, the finite τc effect has the property of selectively damping the smallest scales while certain vertical modes at planetary scales decay...


Journal of the Atmospheric Sciences | 1997

Analytic Approximations for Moist Convectively Adjusted Regions

Jia-Yuh Yu; J. David Neelin

Solutions are obtained for convective regions in a continuously stratified, linearized primitive equation model using a smoothly posed moist convective adjustment parameterization of cumulus convection. In the approximation in which the convective adjustment time is fast compared to other processes, the vertical structure of the temperature field is constrained to be close to the quasi-equilibrium structure determined by the convective scheme. This in turn constrains the vertical structure of the baroclinic pressure gradients and velocity field. Analytic solutions result for vertical structures, while the horizontal and time dependence is governed by equations akin to shallow water equations. These consist of equations linking baroclinic velocities and pressure gradients, plus a moist static energy equation governing thermodynamics. This system holds for basic states that are slowly varying in space, for regions where deep convection happens frequently enough to constrain the temperature field. An effective static stability for these convectively constrained motions, the gross moist stability M, is defined in terms of thermodynamic variables. In time-dependent solutions, M determines phase speeds in deep convective regions. In solutions forced by sea surface temperature, M determines the work that must be done by vertical motion, which must in turn be balanced by surface fluxes. Surface fluxes tend to draw boundary layer temperature and moisture toward values determined by SST, while the convection translates these into deep baroclinic temperature and pressure gradients. The balance between surface fluxes and the effect of the gross moist stability on vertical motion determines how closely boundary layer enthalpy can follow SST. This picture combines modified versions of mechanisms proposed in simple models by Lindzen and Nigam, and Neelin and Held within a thermodynamically consistent framework. It also helps interpret models with convergence feedback schemes and the Gill model, and allows free parameters in these models to be related to basic thermodynamic quantities.


Journal of Geophysical Research | 2015

The impacts of cloud snow radiative effects on Pacific Ocean surface heat fluxes, surface wind stress, and ocean temperatures in coupled GCM simulations

Jui-Lin Li; Wei-Liang Lee; Tong Lee; Eric J. Fetzer; Jia-Yuh Yu; Terence L. Kubar; Carmen Boening

An accurate representation of the climatology of the coupled ocean-atmosphere system in global climate models has strong implications for the reliability of projected climate change inferred by these models. Our previous efforts have identified substantial biases of ocean surface wind stress that are fairly common in two generations of the Coupled Model Intercomparison Project (CMIP) models, relative to QuikSCAT climatology. One of the potential causes of the CMIP model biases is the missing representation of large frozen precipitating hydrometeors (i.e., cloud snow) in all CMIP3 and most CMIP5 models, which has not been investigated previously. We examine the impacts of cloud snow on the radiation and atmospheric circulation, air-sea fluxes, and explore the implications to common biases in CMIP models using the National Center for Atmospheric Research coupled Community Earth System Model (CESM) to perform sensitivity experiments with and without cloud snow radiative effects. This study focuses on the impacts of cloud snow in CESM on ocean surface wind stress and air-sea heat fluxes, as well as their relationship with sea surface temperature (SST) and subsurface ocean temperatures in the Pacific sector. It is found that inclusion of the cloud snow parameterization in CESM reduces the surface wind stress and upper ocean temperature (including SST) biases in the tropical and midlatitude Pacific. The differences in the upper ocean temperature with and without the cloud snow parameterization are consistent with the effect of different strength of vertical mixing due to ocean surface wind stress differences but cannot be explained by the differences in net air-sea heat fluxes.


Journal of Geophysical Research | 2016

Considering the radiative effects of snow on tropical Pacific Ocean radiative heating profiles in contemporary GCMs using A‐Train observations

Jun Li; Wei-Liang Lee; Duane E. Waliser; Yi-Hui Wang; Jia-Yuh Yu; Xianan Jiang; Tristan S. L'Ecuyer; Yi-Chun Chen; Terry Kubar; Eric J. Fetzer; M. Mahakur

This study characterizes biases in water vapor, dynamics, shortwave (SW) and longwave (LW) radiative properties in contemporary global climate models (GCMs) against observations over tropical Pacific Ocean. The observations are based on Atmospheric Infrared Sounder for water vapor, CloudSat 2B-FLXHR-LIDAR for LW and SW radiative heating profiles, and radiative flux from Clouds and the Earth’s Radiant Energy System products. The model radiative heating profiles are adopted from the coupled and uncoupled National Center for Atmospheric Research (NCAR) Community Earth System Model version 1 (CESM1) and joint Year of Tropical Convection (YOTC)/Madden Julian Oscillation (MJO) Task Force-Global Energy and Water Cycle Experiment Atmospheric System Studies (GASS) Multi-Model Physical Processes Experiment (YOTC-GASS). The results from the model evaluation for YOTC-GASS and NCAR CESM1 demonstrate a number of systematic radiative biases. These biases include excessive outgoing LW radiation and excessive SW surface radiative fluxes, in conjunction with a radiatively unstable atmosphere with excessive LW cooling in the upper troposphere over convectively active areas, such as the Intertropical Convergence Zone/South Pacific Convergence Zone (ITCZ/SPCZ) and warm pool. Using sensitivity experiments with the NCAR-uncoupled/NCAR-coupled CESM1, we infer that these biases partly result from the interactions between falling snow and radiation that are missing in most contemporary GCMs (e.g., YOTC-GASS, Coupled Model Intercomparison Project 3 (CMIP)3, and Atmospheric Model Intercomparison Project 5 (AMIP5)/CMIP5). A number of biases in the YOTC-GASSmodel simulations are consistent with model biases in CMIP3, AMIP5/CMIP5, and NCAR-uncoupled/NCAR-coupled model simulation without snow-radiation interactions. These include excessive upper level convection and low level downward motion with outflow from ITCZ/SPCZ. This generates weaker low-level trade winds and excessive precipitation in the Central Pacific Trade wind regions. The excessive LW radiative cooling in NCAR-coupled/NCAR-uncoupled GCM simulations is reduced by 10–20% with snow-radiative effects considered.


Journal of Geophysical Research | 2016

The Impacts of Precipitating Hydrometeors Radiative Effects on Land Surface Temperature in Contemporary GCMs using Satellite Observations

Jui-Lin Li; Wei-Liang Lee; Jia-Yuh Yu; Glynn C. Hulley; Eric J. Fetzer; Yi-Chun Chen; Yi-Hui Wang

An accurate representation of the land surface temperature (LST) climatology of the coupled land-atmosphere system has strong implications for the reliability of projected land surface processes and their variability inferred by the global climate models (GCMs) contributed to the Intergovernmental Panel on Climate Change CMIP5. We have identified a substantial underestimation of the total ice water path and biases of surface radiation budget commonly seen in the CMIP models which are highly correlated to the biases of LST over land. One of the potential causes of the CMIP model biases is the missing representation of large frozen precipitating hydrometeors and their radiative effects (i.e., snow) in all CMIP3 and most CMIP5 models. We examine the impacts of snow on the radiation, all-sky and clear-sky LST, and air-land heat fluxes to explore the implications to the common biases in CMIP models by performing sensitivity experiments with and without snow radiation effects using the National Center for Atmospheric Research Community Earth System Model version 1. It is found that an exclusion of the snow radiative effects the CESM1 generates the LST biases (up to 2–3 K) in the midlatitude and high latitude, in particular, in December, January, and February (DJF). All-sky and clear-sky LST in model simulations are found to be too cold and are mainly due to underestimated downward surface (longwave) LW radiation in DJF, which is consistent with those in CMIP models. The correlation between the changes of the LST and downward surface LW radiation is very high both in summer and winter seasons.


Journal of Geophysical Research | 2015

An observationally based evaluation of WRF seasonal simulations over the Central and Eastern Pacific

Longtao Wu; Jui-Lin Li; Chia-Jung Pi; Jia-Yuh Yu; Jen-Ping Chen

This study uses multiple satellite data sets to evaluate seasonal simulations of the Weather Research and Forecasting (WRF) model over Central and Eastern Pacific. Experiments with five different convective parameterizations all show reasonably good performance for precipitation simulations. However, large discrepancies exist in the model-simulated ice clouds compared to CloudSat observations. Underestimations of ice clouds, mainly snow and graupel, are present in the Intertropical Convergence Zone (ITCZ) in all the experiments compared to CloudSat. In the ITCZ, all the experiments show a systematic overestimation of outgoing longwave radiation at the top of the atmosphere and downward shortwave radiation at the surface, along with biased cloud cooling in the middle and upper troposphere and biased cloud warming in the lower troposphere. Vertical motion is enhanced in the ITCZ compared to reanalysis. A weaker low-level circulation over the midlatitude oceans is evidenced in all simulations with an eastward overextension of the South Pacific Convergence Zone and overestimated moisture over the Southern Hemisphere oceans when compared to Special Sensor Microwave/Imager observations. Sensitivity experiment demonstrates that doubling the radiative effect of snow can reduce high biases in vertical motion within the ITCZ and improve the large-scale circulation and moisture over the midlatitude oceans.


Journal of the Atmospheric Sciences | 2016

Impacts of Vertical Structure of Large-Scale Vertical Motion in Tropical Climate: Moist Static Energy Framework

Hien Xuan Bui; Jia-Yuh Yu; Chia Chou

AbstractInteractions between cumulus convection and its large-scale environment have been recognized as crucial to the understanding of tropical climate and its variability. In this study, the moist static energy (MSE) budget is employed to investigate the potential impact of the vertical structure of large-scale vertical motion in tropical climate based on results from both reanalysis data and model simulation. Two domains are selected over the western and eastern Pacific with vertical motion profiles that are dominated by top-heavy and bottom-heavy structures, respectively. The bottom-heavy structure is climatologically associated with more shallow convection, while the top-heavy structure is related to more deep convection. The column-integrated vertical MSE advection of top-heavy vertical motion is positive, while that of bottom-heavy vertical motion tends to be negative. Controlling factors responsible for the above vertical MSE advection contrast are discussed based on a simple decomposition of the ...

Collaboration


Dive into the Jia-h Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric J. Fetzer

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yi-Hui Wang

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jui-Lin Li

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mark I. Richardson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yi-Chun Chen

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.-L. F. Li

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tong Lee

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge