Wei-Liang Lee
Academia Sinica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wei-Liang Lee.
Journal of Geophysical Research | 2014
K. N. Liou; Y. Takano; Cenlin He; Ping Yang; Lai-Yung R. Leung; Yu Gu; Wei-Liang Lee
A stochastic approach has been developed to model the positions of BC (black carbon)/dust internally mixed with two snow grain types: hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine BC/dust single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), the action of internal mixing absorbs substantially more light than external mixing. The snow grain shape effect on absorption is relatively small, but its effect on asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions of BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2–5 µm) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 µm, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo substantially more than external mixing and that the snow grain shape plays a critical role in snow albedo calculations through its forward scattering strength. Also, multiple inclusion of BC/dust significantly reduces snow albedo as compared to an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization involving contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountain/snow topography.
Journal of Geophysical Research | 2011
Wei-Liang Lee; K. N. Liou; Alex Hall
[1] On the basis of 3‐D Monte Carlo photon tracing simulations, we have developed a parameterization of solar fluxes over mountain surfaces by means of the multiple linear regression analysis associated with topographic information, including elevation, solar incident angle, sky view factor, and terrain configuration factor. For clear skies without aerosols and clouds, the regression equation for the direct flux can explain more than 98% of the variation in which the solar incident angle is the dominant factor, except when the Sun is very low or at zenith. About 60% of thevariation in the diffuse flux is predicted bythe regression equation in which the mean elevation, sky view factor, and solar incident angle are key factors. The terrain‐reflected fluxes, proportional to the surface albedo, are well correlated with the terrain configuration factor with more than 80% of the variation that can beexplained. Thecoupledfluxes involveintricate interactions, andtheregressionanalysis is less satisfactory in cases of low albedo values. However, over high‐albedo surfaces, the terrain configuration factorbecomes most dominant, leadingtoasignificant improvement in regression performance. In these analyses, a surface albedo invariant with wavelength has been used. Using a region over the Sierra Nevada as a testbed, the preceding regression parameterizationshavebeenspecificallydevelopedsothatthefluxesevaluatedfromthe3‐D Monte Carlo model over intense topography can be used as a perturbation term to correct those computed from the plane‐parallel counterpart, commonly used in regional climate models and GCMs.
Journal of Geophysical Research | 2014
Jui-Lin Li; Wei-Liang Lee; Duane E. Waliser; J. David Neelin; Justin P. Stachnik; Tong Lee
Conventional global climate models (GCMs) often consider radiation interactions only with small-particle/suspended cloud mass, ignoring large-particle/falling and convective core cloud mass. We characterize the radiation and atmospheric circulation impacts of frozen precipitating hydrometeors (i.e., snow), using the National Center for Atmospheric Research coupled GCM, by conducting sensitivity experiments that turn off the radiation interaction with snow. The changes associated with the exclusion of precipitating hydrometeors exhibit a number differences consistent with biases in CMIP3 and CMIP5 (Coupled Model Intercomparison Project Phase 3 and Phase 5), including more outgoing longwave flux at the top of atmosphere and downward shortwave flux at the surface in the heavily precipitating regions. Neglecting the radiation interaction of snow increases the net radiative cooling near the cloud top with the resulting increased instability triggering more convection in the heavily precipitating regions of the tropics. In addition, the increased differential vertical heating leads to a weakening of the low-level mean flow and an apparent low-level eastward advection from the warm pool resulting in moisture convergence south of the Intertropical Convergence Zone and north of the South Pacific Convergence Zone (SPCZ). This westerly bias, with effective warm and moist air transport, might be a contributing factor in the models northeastward overextension of the SPCZ and the concomitant changes in sea surface temperatures, upward motion, and precipitation. Broader dynamical impacts include a stronger local meridional overturning circulation over the middle and east Pacific and commensurate changes in low and upper level winds, large-scale ascending motion, with a notable similarity to the systematic bias in this region in CMIP5 upper level zonal winds.
Geophysical Research Letters | 2007
K. N. Liou; Wei-Liang Lee; Alex Hall
infrared fluxes. We selected an area of 100 � 100 km 2 in the Tibetan Plateau centered at Lhasa city and used the albedo and surface temperature from MODIS/Terra for this study. We showed that anomalies of surface solar fluxes with reference to a flat surface can be as large as 600 W/m 2 , depending on time of day, mountain configuration, and albedo. Surface temperature is the dominating factor in determining anomalies of the surface infrared flux distribution relative to a flat surface with values as high as 70 W/m 2 at cold mountain surfaces. The average surface solar flux over regional domains of 100 � 100 km 2 and 50 � 50km 2 comprisingintensetopographycandeviatefrom the smoothed surface conventionally assumed in climate models and GCMs by 10–50 W/m 2 . Citation: Liou, K. N., W.-L. Lee, and A. Hall (2007), Radiative transfer in mountains: Application to the Tibetan Plateau, Geophys. Res. Lett., 34, L23809, doi:10.1029/2007GL031762.
Scientific Reports | 2017
Bin Zhao; Kuo-Nan Liou; Yu Gu; Qinbin Li; Jonathan H. Jiang; Hui Su; Cenlin He; Hsien-Liang R. Tseng; Shuxiao Wang; Run Liu; Ling Qi; Wei-Liang Lee; Jiming Hao
Aerosol-cloud interactions (aerosol indirect effects) play an important role in regional meteorological variations, which could further induce feedback on regional air quality. While the impact of aerosol-cloud interactions on meteorology and climate has been extensively studied, their feedback on air quality remains unclear. Using a fully coupled meteorology-chemistry model, we find that increased aerosol loading due to anthropogenic activities in China substantially increases column cloud droplet number concentration and liquid water path (LWP), which further leads to a reduction in the downward shortwave radiation at surface, surface air temperature and planetary boundary layer (PBL) height. The shallower PBL and accelerated cloud chemistry due to larger LWP in turn enhance the concentrations of particulate matter with diameter less than 2.5 μm (PM2.5) by up to 33.2 μg m−3 (25.1%) and 11.0 μg m−3 (12.5%) in January and July, respectively. Such a positive feedback amplifies the changes in PM2.5 concentrations, indicating an additional air quality benefit under effective pollution control policies but a penalty for a region with a deterioration in PM2.5 pollution. Additionally, we show that the cloud processing of aerosols, including wet scavenging and cloud chemistry, could also have substantial effects on PM2.5 concentrations.
Journal of Geophysical Research | 2015
Jui-Lin Li; Wei-Liang Lee; Tong Lee; Eric J. Fetzer; Jia-Yuh Yu; Terence L. Kubar; Carmen Boening
An accurate representation of the climatology of the coupled ocean-atmosphere system in global climate models has strong implications for the reliability of projected climate change inferred by these models. Our previous efforts have identified substantial biases of ocean surface wind stress that are fairly common in two generations of the Coupled Model Intercomparison Project (CMIP) models, relative to QuikSCAT climatology. One of the potential causes of the CMIP model biases is the missing representation of large frozen precipitating hydrometeors (i.e., cloud snow) in all CMIP3 and most CMIP5 models, which has not been investigated previously. We examine the impacts of cloud snow on the radiation and atmospheric circulation, air-sea fluxes, and explore the implications to common biases in CMIP models using the National Center for Atmospheric Research coupled Community Earth System Model (CESM) to perform sensitivity experiments with and without cloud snow radiative effects. This study focuses on the impacts of cloud snow in CESM on ocean surface wind stress and air-sea heat fluxes, as well as their relationship with sea surface temperature (SST) and subsurface ocean temperatures in the Pacific sector. It is found that inclusion of the cloud snow parameterization in CESM reduces the surface wind stress and upper ocean temperature (including SST) biases in the tropical and midlatitude Pacific. The differences in the upper ocean temperature with and without the cloud snow parameterization are consistent with the effect of different strength of vertical mixing due to ocean surface wind stress differences but cannot be explained by the differences in net air-sea heat fluxes.
Journal of Geophysical Research | 2014
Jui-Lin Li; Wei-Liang Lee; Duane E. Waliser; Justin P. Stachnik; Eric J. Fetzer; Sun Wong; Qing Yue
Significant systematic biases in the moisture fields within the tropical Pacific trade wind regions are found in the Coupled Model Intercomparison Project (CMIP3/CMIP5) against profile and total column water vapor (TotWV) estimates from the Atmospheric Infrared Sounder and TotWV from the Special Sensor Microwave/Imager. Positive moisture biases occur in conjunction with significant biases of eastward low-level moisture convergence north of the South Pacific Convergence Zone and south of the Intertropical Convergence Zone—the V-shaped regions. The excessive moisture there is associated with overestimates of reflected upward shortwave (RSUT), underestimates of outgoing longwave radiation (RLUT) at the top of atmosphere (TOA), and underestimates of downward shortwave flux at the surface (RSDS) compared to Clouds and the Earths Energy System, Energy Balance and Filled data. We characterize the impacts of falling snow and its radiation interaction, which are not included in most CMIP5 models, on the moisture fields using the National Center for Atmospheric Research-coupled global climate model (GCM). A number of differences in the model simulation without snow-radiation interactions are consistent with biases in the CMIP5 simulations. These include effective low-level eastward/southeastward wind and surface wind stress anomalies, and an increase in TotWV, vertical profile of moisture, and cloud amounts in the V-shaped region. The anomalous water vapor and cloud amount might be associated with the model increase of RSUT and decrease of RLUT at TOA and decreased RSDS in clear and all sky in these regions. These findings hint at the importance of water vapor-radiation interactions in the CMIPS/CMIP5 model simulations that exclude the radiative effect of snow.
Journal of Geophysical Research | 2016
Jun Li; Wei-Liang Lee; Duane E. Waliser; Yi-Hui Wang; Jia-Yuh Yu; Xianan Jiang; Tristan S. L'Ecuyer; Yi-Chun Chen; Terry Kubar; Eric J. Fetzer; M. Mahakur
This study characterizes biases in water vapor, dynamics, shortwave (SW) and longwave (LW) radiative properties in contemporary global climate models (GCMs) against observations over tropical Pacific Ocean. The observations are based on Atmospheric Infrared Sounder for water vapor, CloudSat 2B-FLXHR-LIDAR for LW and SW radiative heating profiles, and radiative flux from Clouds and the Earth’s Radiant Energy System products. The model radiative heating profiles are adopted from the coupled and uncoupled National Center for Atmospheric Research (NCAR) Community Earth System Model version 1 (CESM1) and joint Year of Tropical Convection (YOTC)/Madden Julian Oscillation (MJO) Task Force-Global Energy and Water Cycle Experiment Atmospheric System Studies (GASS) Multi-Model Physical Processes Experiment (YOTC-GASS). The results from the model evaluation for YOTC-GASS and NCAR CESM1 demonstrate a number of systematic radiative biases. These biases include excessive outgoing LW radiation and excessive SW surface radiative fluxes, in conjunction with a radiatively unstable atmosphere with excessive LW cooling in the upper troposphere over convectively active areas, such as the Intertropical Convergence Zone/South Pacific Convergence Zone (ITCZ/SPCZ) and warm pool. Using sensitivity experiments with the NCAR-uncoupled/NCAR-coupled CESM1, we infer that these biases partly result from the interactions between falling snow and radiation that are missing in most contemporary GCMs (e.g., YOTC-GASS, Coupled Model Intercomparison Project 3 (CMIP)3, and Atmospheric Model Intercomparison Project 5 (AMIP5)/CMIP5). A number of biases in the YOTC-GASSmodel simulations are consistent with model biases in CMIP3, AMIP5/CMIP5, and NCAR-uncoupled/NCAR-coupled model simulation without snow-radiation interactions. These include excessive upper level convection and low level downward motion with outflow from ITCZ/SPCZ. This generates weaker low-level trade winds and excessive precipitation in the Central Pacific Trade wind regions. The excessive LW radiative cooling in NCAR-coupled/NCAR-uncoupled GCM simulations is reduced by 10–20% with snow-radiative effects considered.
Journal of the Atmospheric Sciences | 2010
Chia-chi Wang; Chia Chou; Wei-Liang Lee
Abstract The effects of moisture on the intertropical convergence zone (ITCZ) over the eastern Pacific on the synoptic time scale are investigated using an intermediate complexity atmospheric circulation model, the quasi-equilibrium tropical circulation model (QTCM1), on an aquaplanet. The dry simulation shows results consistent with those of simple dynamic models, except that a slightly stronger heating rate is needed owing to different model designs. In the moist simulations, the most important result is the formation of a tail southwest of a vortex during and after the ITCZ breakdown. This tail may extend zonally more than 60° longitude and last for more than two weeks in an idealized simulation. In the eastern North Pacific, this phenomenon is often observed in cases that involve easterly waves. In a sense, the formation of the tail suggests a possible mechanism that forms an ITCZ efficiently. This study shows that the surface convergent flow induced by a disturbance initializes a positive wind–evapor...
Journal of the Atmospheric Sciences | 2007
Wei-Liang Lee; K. N. Liou
Abstract A coupled atmosphere–ocean radiative transfer model based on the analytic four-stream approximation has been developed. It is shown that this radiation model is computationally efficient and at the same time can achieve acceptable accuracy for flux and heating rate calculations in the atmosphere and the oceans. To take into account the reflection and transmission of the wind-blown air–water interface, a Monte Carlo method has been employed to simulate the traveling of photons and to compute the reflectance and transmittance of direct and diffuse solar fluxes at the ocean surface. For the ocean part, existing bio-optical models, which correlate the concentration of chlorophyll and the absorption and scattering coefficients of phytoplankton and other matters, have been integrated into this coupled model. Comparing to the values computed by more discrete streams illustrates that the relative accuracies of the surface albedo and total transmission in the ocean determined from the present model are ge...