Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiafen Hu is active.

Publication


Featured researches published by Jiafen Hu.


Journal of Immunology | 2010

A novel HLA (HLA-A*0201) transgenic rabbit model for preclinical evaluation of human CD8+ T cell epitope-based vaccines against ocular herpes.

Aziz Alami Chentoufi; Gargi Dasgupta; Neil D. Christensen; Jiafen Hu; Zareen S. Choudhury; Arfan Azeem; James V. Jester; Anthony B. Nesburn; Steven L. Wechsler; Lbachir BenMohamed

We introduced a novel humanized HLA-A*0201 transgenic (HLA Tg) rabbit model to assess the protective efficacy of a human CD8+ T cell epitope-based vaccine against primary ocular herpes infection and disease. Each of the three immunodominant human CD8+ T cell peptide epitopes from HSV-1 glycoprotein D (gD53–61, gD70–78, and gD278–286) were joined with a promiscuous human CD4+ T cell peptide epitope (gD49–82) to construct three separate pairs of CD4–CD8 peptides. Each CD4–CD8 peptide pair was then covalently linked to an Nε-palmitoyl–lysine residue via a functional base lysine amino group to construct CD4–CD8 lipopeptides. HLA Tg rabbits were immunized s.c. with a mixture of the three CD4–CD8 HSV-1 gD lipopeptides. The HSV-gD–specific T cell responses induced by the mixture of CD4–CD8 lipopeptide vaccine and the protective efficacy against acute virus replication and ocular disease were determined. Immunization induced HSV-gD49–82–specific CD4+ T cells in draining lymph node (DLN); induced HLA-restricted HSV-gD53–61, gD70–78, and gD278–286–specific CD8+ T cells in DLN, conjunctiva, and trigeminal ganglia and reduced HSV-1 replication in tears and corneal eye disease after ocular HSV-1 challenge. In addition, the HSV-1 epitope-specific CD8+ T cells induced in DLNs, conjunctiva, and the trigeminal ganglia were inversely proportional with corneal disease. The humanized HLA Tg rabbits appeared to be a useful preclinical animal model for investigating the immunogenicity and protective efficacy of human CD8+ T cell epitope-based prophylactic vaccines against ocular herpes. The relevance of HLA Tg rabbits for future investigation of human CD4–CD8 epitope-based therapeutic vaccines against recurrent HSV-1 is discussed.


Journal of Virology | 2002

Intracutaneous DNA Vaccination with the E8 Gene of Cottontail Rabbit Papillomavirus Induces Protective Immunity against Virus Challenge in Rabbits

Jiafen Hu; Ricai Han; Nancy M. Cladel; Martin D. Pickel; Neil D. Christensen

ABSTRACT The cottontail rabbit papillomavirus (CRPV)-rabbit model has been used in several studies for testing prophylactic and therapeutic papillomavirus vaccines. Earlier observations had shown that the CRPV nonstructural genes E1, E2, and E6 induced strong to partial protective immunity against CRPV infection. In this study, we found that CRPV E8 immunization eliminated virus-induced papillomas in EIII/JC inbred rabbits (100%) and provided partial protection (55%) against virus challenge in outbred New Zealand White rabbits. CRPV-E8 is a small open reading frame, coding for a 50-amino-acid protein, that is colinear with the CRPV E6 gene and has features similar to those of the bovine papillomavirus and human papillomavirus E5 genes. Papillomas that grew on E8-vaccinated outbred rabbits were significantly smaller than those on vector-vaccinated rabbits (P < 0.01; t test). Delayed-type hypersensitivity skin tests showed that some of the E8-vaccinated rabbits had positive responses to E8-specific peptides.


Journal of Immunology | 2006

An HLA-A2.1-Transgenic Rabbit Model to Study Immunity to Papillomavirus Infection

Jiafen Hu; Xuwen Peng; Todd D. Schell; Lynn R. Budgeon; Nancy M. Cladel; Neil D. Christensen

We have established several HLA-A2.1-transgenic rabbit lines to provide a host to study CD8+ T cell responses during virus infections. HLA-A2.1 protein expression was detected on cell surfaces within various organ tissues. Continuous cultured cells from these transgenic rabbits were capable of presenting both endogenous and exogenous HLA-A2.1-restricted epitopes to an HLA-A2.1-restricted epitope-specific CTL clone. A DNA vaccine containing an HLA-A2.1-restricted human papillomavirus type 16 E7 epitope (amino acid residues 82–90) stimulated epitope-specific CTLs in both PBLs and spleen cells of transgenic rabbits. In addition, vaccinated transgenic rabbits were protected against infection with a mutant cottontail rabbit papillomavirus DNA containing an embedded human papillomavirus type 16 E7/82–90 epitope. Complete protection was achieved using a multivalent epitope DNA vaccine based on epitope selection from cottontail rabbit papillomavirus E1 using MHC class I epitope prediction software. HLA-A2.1-transgenic rabbits will be an important preclinical animal model system to study virus-host interactions and to assess specific targets for immunotherapy.


Journal of Virology | 2002

Amino Acid Residues in the Carboxy-Terminal Region of Cottontail Rabbit Papillomavirus E6 Influence Spontaneous Regression of Cutaneous Papillomas

Jiafen Hu; Nancy M. Cladel; Martin D. Pickel; Neil D. Christensen

ABSTRACT Previous studies have identified two different strains of cottontail rabbit papillomavirus (CRPV) that differ by approximately 5% in base pair sequence and that perform quite differently when used to challenge New Zealand White (NZW) rabbit skin. One strain caused persistent lesions (progressor strain), and the other induced papillomas that spontaneously regressed (regressor strain) at high frequencies (J. Salmon, M. Nonnenmacher, S. Caze, P. Flamant, O. Croissant, G. Orth, and F. Breitburd, J. Virol. 74:10766-10777, 2000; J. Salmon, N. Ramoz, P. Cassonnet, G. Orth, and F. Breitburd, Virology 235:228-234, 1997). We generated a panel of CRPV genomes that contained chimeric and mutant progressor and regressor strain E6 genes and assessed the outcome upon infection of both outbred and EIII/JC inbred NZW rabbits. The carboxy-terminal 77-amino-acid region of the regressor CRPV strain E6, which contained 15 amino acid residues that are different from those of the equivalent region of the persistent CRPV strain E6, played a dominant role in the conversion of the persistent CRPV strain to one showing high rates of spontaneous regressions. In addition, a single amino acid change (G252E) in the E6 protein of the CRPV progressor strain led to high frequencies of spontaneous regressions in inbred rabbits. These observations imply that small changes in the amino acid sequences of papillomavirus proteins can dramatically impact the outcome of natural host immune responses to these viral infections. The data imply that intrastrain differences between separate isolates of a single papillomavirus type (such as human papillomavirus type 16) may contribute to a collective variability in host immune responses in outbred human populations.


Journal of Virology | 2013

Secondary Infections, Expanded Tissue Tropism, and Evidence for Malignant Potential in Immunocompromised Mice Infected with Mus musculus Papillomavirus 1 DNA and Virus

Nancy M. Cladel; Lynn R. Budgeon; Timothy K. Cooper; Karla K. Balogh; Jiafen Hu; Neil D. Christensen

ABSTRACT Papillomavirus disease poses a special challenge to people with compromised immune systems. Appropriate models to study infections in these individuals are lacking. We report here the development of a model that will help to address these deficiencies. The MmuPV1 genome was synthesized and used successfully to produce virus from DNA infections in immunocompromised mice. In these early studies, we have demonstrated both primary and secondary infections, expanded tissue tropism, and extensive dysplasia.


PLOS ONE | 2008

CRPV Genomes with Synonymous Codon Optimizations in the CRPV E7 Gene Show Phenotypic Differences in Growth and Altered Immunity upon E7 Vaccination

Nancy M. Cladel; Jiafen Hu; Karla K. Balogh; Neil D. Christensen

Papillomaviruses use rare codons relative to their hosts. Recent studies have demonstrated that synonymous codon changes in viral genes can lead to increased protein production when the codons are matched to those of cells in which the protein is being expressed. We theorized that the immunogenicity of the virus would be enhanced by matching codons of selected viral genes to those of the host. We report here that synonymous codon changes in the E7 oncogene are tolerated in the context of the cottontail rabbit papillomavirus (CRPV) genome. Papilloma growth rates differ depending upon the changes made indicating that synonymous codons are not necessarily neutral. Immunization with wild type E7 DNA yielded significant protection from subsequent challenge by both wild type and codon-modified genomes. The reduction in growth was most dramatic with the genome containing the greatest number of synonymous codon changes.


PLOS ONE | 2015

A Novel Pre-Clinical Murine Model to Study the Life Cycle and Progression of Cervical and Anal Papillomavirus Infections

Nancy M. Cladel; Lynn R. Budgeon; Karla K. Balogh; Timothy K. Cooper; Jiafen Hu; Neil D. Christensen

Background Papillomavirus disease and associated cancers remain a significant health burden in much of the world. The current protective vaccines, Gardasil and Cervarix, are expensive and not readily available to the underprivileged. In addition, the vaccines have not gained wide acceptance in the United States nor do they provide therapeutic value. Papillomaviruses are strictly species specific and thus human viruses cannot be studied in an animal host. An appropriate model for mucosal disease has long been sought. We chose to investigate whether the newly discovered mouse papillomavirus, MmuPV1, could infect mucosal tissues in Foxn1nu/Foxn1nu mice. Methods The vaginal and anal canals of Foxn1nu/Foxn1nu mice were gently abraded using Nonoxynol-9 and “Doctor’s BrushPicks” and MmuPV1 was delivered into the vaginal tract or the anal canal. Results Productive vaginal, cervical and anal infections developed in all mice. Vaginal/cervical infections could be monitored by vaginal lavage. Dysplasias were evident in all animals. Conclusions Anogenital tissues of a common laboratory mouse can be infected with a papillomavirus unique to that animal. This observation will pave the way for fundamental virological and immunological studies that have been challenging to carry out heretofore due to lack of a suitable model system.


Journal of Virology | 2007

Establishment of a Cottontail Rabbit Papillomavirus/HLA-A2.1 Transgenic Rabbit Model

Jiafen Hu; Xuwen Peng; Lynn R. Budgeon; Nancy M. Cladel; Karla K. Balogh; Neil D. Christensen

ABSTRACT Three transgenic rabbit lines that express a well-characterized human major histocompatibility complex class I (MHC-I) gene (HLA-A2.1) have been established. All three lines carry the HLA-A2.1 heavy chain and are able to pass the transgene to their offspring with both the outbred and the inbred EIII/JC genetic background. HLA-A2.1 colocalizes exclusively with rabbit MHC-I on the cell surfaces. These HLA-A2.1 transgenic rabbits demonstrated infection patterns similar to those found after cottontail rabbit papillomavirus (CRPV) challenge when compared with results in normal rabbits, although higher regression rates were found in HLA-A2.1 transgenic rabbits. Because the CRPV genome can accommodate significant modifications, the CRPV/HLA-A2.1 rabbit model has the potential to be used to screen HLA-A2.1-restricted immunogenic epitopes from human papillomaviruses in the context of in vivo papillomavirus infection.


Virus Research | 2009

Papillomavirus DNA complementation in vivo.

Jiafen Hu; Nancy M. Cladel; Lynn R. Budgeon; Karla K. Balogh; Neil D. Christensen

Recent phylogenic studies indicate that DNA recombination could have occurred in ancient papillomavirus types. However, no experimental data are available to demonstrate this event because of the lack of human papillomavirus infection models. We have used the cottontail rabbit papillomavirus (CRPV)/rabbit model to study pathogenesis and immunogenicity of different mutant genomes in vivo. Although the domestic rabbit is not a natural host for CRPV infection, it is possible to initiate infection with naked CRPV DNA cloned into a plasmid and monitor papilloma outgrowth on these animals. Taking advantage of a large panel of mutants based on a CRPV strain (Hershey CRPV), we tested the hypothesis that two non-viable mutant genomes could induce papillomas by either recombination or complementation. We found that co-infection with a dysfunctional mutant with an E2 transactivation domain mutation and another mutant with an E7 ATG knock out generated papillomas in rabbits. DNA extracted from these papillomas contained genotypes from both parental genomes. Three additional pairs of dysfunctional mutants also showed similar results. Individual wild type genes were also shown to rescue the function of corresponding dysfunctional mutants. Therefore, we suggest that complementation occurred between these two non-viable mutant PV genomes in vivo.


Virology | 2013

Synonymous codon changes in the oncogenes of the cottontail rabbit papillomavirus lead to increased oncogenicity and immunogenicity of the virus

Nancy M. Cladel; Lynn R. Budgeon; Jiafen Hu; Karla K. Balogh; Neil D. Christensen

Papillomaviruses use rare codons with respect to the host. The reasons for this are incompletely understood but among the hypotheses is the concept that rare codons result in low protein production and this allows the virus to escape immune surveillance. We changed rare codons in the oncogenes E6 and E7 of the cottontail rabbit papillomavirus to make them more mammalian-like and tested the mutant genomes in our in vivo animal model. While the amino acid sequences of the proteins remained unchanged, the oncogenic potential of some of the altered genomes increased dramatically. In addition, increased immunogenicity, as measured by spontaneous regression, was observed as the numbers of codon changes increased. This work suggests that codon usage may modify protein production in ways that influence disease outcome and that evaluation of synonymous codons should be included in the analysis of genetic variants of infectious agents and their association with disease.

Collaboration


Dive into the Jiafen Hu's collaboration.

Top Co-Authors

Avatar

Neil D. Christensen

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Nancy M. Cladel

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Karla K. Balogh

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Lynn R. Budgeon

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Xuwen Peng

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Timothy K. Cooper

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Martin D. Pickel

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Todd D. Schell

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge