Xuwen Peng
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xuwen Peng.
Brain Research | 2004
Zhiwei Guan; Xuwen Peng; Jidong Fang
Loss of sleep may result in memory impairment. However, little is known about the biochemical basis for memory deficits induced by sleep deprivation. Extracellular signal-regulated kinase (ERK) is involved in memory consolidation in different tasks. Phosphorylation of ERK is necessary for its activation and is an important step in mediating neuronal responses to synaptic activities. The aim of the present study was to determine the effects of total sleep deprivation (TSD) on memory and ERK phosphorylation in the brain. Rats were trained in Morris water maze to find a hidden platform (a spatial task) or a visible platform (a nonspatial task) after 6 h TSD or spontaneous sleep. TSD had no effect on spatial learning, but significantly impaired spatial memory tested 24 h after training. Nonspatial learning and memory were not impaired by TSD. Phospho-ERK levels in the hippocampus were significantly reduced after 6 h TSD compared to the controls and returned to the control levels after 2 h recovery sleep. Total ERK1 and ERK2 were slightly increased after 6 h TSD and returned to the control levels after 2 h recovery sleep. These alterations were not observed in the cortex after TSD. Protein phosphotase-1 and mitogen-activated protein kinase phosphatase-2, which dephosphorylates phospho-ERK, were also measured, but they were not altered by TSD. The impairments of both spatial memory and ERK phosphorylation indicate that the hippocampus is vulnerable to sleep loss. These results are consistent with the idea that decreased ERK activation in the hippocampus is involved in sleep deprivation-induced spatial memory impairment.
Journal of Clinical Investigation | 2008
Michael Brunner; Xuwen Peng; Gong Xin Liu; Xiao-Qin Ren; Ohad Ziv; Bum-Rak Choi; Rajesh Mathur; Mohammed Hajjiri; Katja E. Odening; Eric Steinberg; Eduardo J. Folco; Ekatherini Pringa; Jason Centracchio; Roland R. Macharzina; Tammy Donahay; Lorraine Schofield; Naveed Rana; Malcolm M. Kirk; Gary F. Mitchell; Athena Poppas; Manfred Zehender; Gideon Koren
Long QT syndrome (LQTS) is a heritable disease associated with ECG QT interval prolongation, ventricular tachycardia, and sudden cardiac death in young patients. Among genotyped individuals, mutations in genes encoding repolarizing K+ channels (LQT1:KCNQ1; LQT2:KCNH2) are present in approximately 90% of affected individuals. Expression of pore mutants of the human genes KCNQ1 (KvLQT1-Y315S) and KCNH2 (HERG-G628S) in the rabbit heart produced transgenic rabbits with a long QT phenotype. Prolongations of QT intervals and action potential durations were due to the elimination of IKs and IKr currents in cardiomyocytes. LQT2 rabbits showed a high incidence of spontaneous sudden cardiac death (>50% at 1 year) due to polymorphic ventricular tachycardia. Optical mapping revealed increased spatial dispersion of repolarization underlying the arrhythmias. Both transgenes caused downregulation of the remaining complementary IKr and IKs without affecting the steady state levels of the native polypeptides. Thus, the elimination of 1 repolarizing current was associated with downregulation of the reciprocal repolarizing current rather than with the compensatory upregulation observed previously in LQTS mouse models. This suggests that mutant KvLQT1 and HERG interacted with the reciprocal wild-type alpha subunits of rabbit ERG and KvLQT1, respectively. These results have implications for understanding the nature and heterogeneity of cardiac arrhythmias and sudden cardiac death.
Heart Rhythm | 2012
Katja E. Odening; Bum-Rak Choi; Gong Xin Liu; Kathryn M Hartmann; Ohad Ziv; Leonard Chaves; Lorraine Schofield; Jason Centracchio; Manfred Zehender; Xuwen Peng; Michael Brunner; Gideon Koren
BACKGROUND Postpubertal women with inherited long QT syndrome type 2 (LQT2) are at increased risk for polymorphic ventricular tachycardia (pVT) and sudden cardiac death (SCD), particularly during the postpartum period. OBJECTIVE To investigate whether sex hormones directly modulate the arrhythmogenic risk in LQTS. METHODS Prepubertal ovariectomized transgenic LQT2 rabbits were treated with estradiol (EST), progesterone (PROG), dihydrotestosterone (DHT), or placebo (OVX). RESULTS During 8 weeks of treatment, major cardiac events-spontaneous pVT or SCD-occurred in 5 of the 7 EST rabbits and in 2 of the 9 OVX rabbits (P <.05); in contrast, no events occurred in 9 PROG rabbits and 6 DHT rabbits (P <.01 vs PROG; P <.05 vs DHT). Moreover, EST increased the incidence of pVT (P <.05 vs OVX), while PROG reduced premature ventricular contractions, bigeminy, couplets, triplets, and pVT (P <.01 vs OVX; P <.001 vs EST). In vivo electrocardiographic monitoring, in vivo electrophysiological studies, and ex vivo optical mapping studies revealed that EST promoted SCD by steepening the QT/RR slope (P <.05), by prolonging cardiac refractoriness (P <.05), and by altering the spatial pattern of action potential duration dispersion. Isoproterenol-induced Ca(2+) oscillations resulted in early afterdepolarizations in EST-treated hearts (4 of 4), while PROG prevented SCD by eliminating this early afterdepolarization formation in 4 of the 7 hearts (P = .058 vs EST; P <.05 vs OVX). Analyses of ion currents demonstrated that EST increased the density of I(Ca,L) as compared with OVX (P <.05) while PROG decreased it (P <.05). CONCLUSION This study reveals the proarrhythmic effect of EST and the antiarrhythmic effect of PROG in LQT2 in vivo, outlining a new potential antiarrhythmic therapy for LQTS.
Journal of Virology | 2000
Ricai Han; Nancy M. Cladel; Cynthia A. Reed; Xuwen Peng; Lynn R. Budgeon; Martin D. Pickel; Neil D. Christensen
ABSTRACT Malignant progression is a life-threatening consequence of human papillomavirus-associated lesions. In this study, we tested the efficacy of papillomavirus early-gene-based vaccines for prevention of carcinoma development of papillomavirus-induced skin papillomas on rabbits. Rabbit skin papillomas were initiated by infection with cottontail rabbit papillomavirus (CRPV). The papillomas were allowed to grow for 3 months without any treatment intervention. Rabbits were then immunized by gene gun-mediated intracutaneous administration of four DNA plasmids encoding CRPV E1, E2, E6, and E7 genes, respectively. All eight control rabbits receiving vector alone developed invasive carcinoma within 8 to 13 months. In contrast, only two of eight vaccinated rabbits developed carcinoma at 12 and 15 months, respectively. Papilloma growth was suppressed in the majority of vaccinated rabbits but not completely eradicated. These results indicate that gene gun-mediated immunization with papillomavirus early genes may be a promising strategy for prevention of malignant progression of human papillomavirus-associated lesions in humans.
Laboratory Animals | 1989
Xuwen Peng; C. M. Lang; C. K. Drozdowicz; B. M. Ohlsson-Wilhelm
The effect of different population densities of mice per cage on plasma corticosterone, peripheral lymphocytes and specific lymphocyte subpopulations was investigated. The animals were housed in groups of 2, 4 or 8 mice per cage and the blood samples were taken from each animal of these groups on days one, 7 and 14. A significant elevation (P<0·05) in plasma corticosterone concentration was observed in the group of 8 mice per cage on days one and 7 as compared with those of 2 or 4 mice per cage. The number of peripheral lymphocytes was significantly decreased in the groups of 2 (P<0·01) and 8 (P<0·05) mice per cage as compared with the group of 4 mice per cage on day one. A significantly decreased number of lymphocytes (P<0·01) in the group of 8 mice per cage continued to day 7. There were no significant differences in specific lymphocyte subpopulations observed among these groups. The results of this study suggest that a population density of 4 mice per cage induced minimal stress compared to that induced by the population densities of 2 or 8 mice per cage. Since stress is known to induce alteration in a variety of biological functions, the population density of mice per cage should be considered in the interpretaion of research data.
American Journal of Physiology-heart and Circulatory Physiology | 2008
Katja E. Odening; Omar Hyder; Leonard Chaves; Lorraine Schofield; Michael Brunner; Malcolm M. Kirk; Manfred Zehender; Xuwen Peng; Gideon Koren
Anesthetic agents prolong cardiac repolarization by blocking ion currents. However, the clinical relevance of this blockade in subjects with reduced repolarization reserve is unknown. We have generated transgenic long QT syndromes type 1 (LQT1) and type 2 (LQT2) rabbits that lack slow delayed rectifier K+ currents (IKs) or rapidly activating K+ currents (IKr) and used them as a model system to detect the channel-blocking properties of anesthetic agents. Therefore, LQT1, LQT2, and littermate control (LMC) rabbits were administered isoflurane, thiopental, midazolam, propofol, or ketamine, and surface ECGs were analyzed. Genotype-specific heart rate correction formulas were used to determine the expected QT interval at a given heart rate. The QT index (QTi) was calculated as percentage of the observed QT/expected QT. Isoflurane, a drug that blocks IKs) prolonged the QTi only in LQT2 and LMC but not in LQT1 rabbits. Midazolam, which blocks inward rectifier K+ current (IK1), prolonged the QTi in both LQT1 and LQT2 but not in LMC. Thiopental, which blocks both IKs and IK1, increased the QTi in LQT2 and LMC more than in LQT1. By contrast, ketamine, which does not block IKr, IKs, or IK1, did not alter the QTi in any group. Finally, anesthesia with isoflurane or propofol resulted in lethal polymorphic ventricular tachycardia (pVT) in three out of nine LQT2 rabbits. Transgenic LQT1 and LQT2 rabbits could serve as an in vivo model in which to examine the pharmacogenomics of drug-induced QT prolongation of anesthetic agents and their proarrhythmic potential. Transgenic LQT2 rabbits developed pVT under isoflurane and propofol, underlining the proarrhythmic risk of IKs blockers in subjects with reduced IKr.
The Journal of Physiology | 2009
Ohad Ziv; Eduardo Morales; Yoon-Kyu Song; Xuwen Peng; Katja E. Odening; Alfred E. Buxton; Alain Karma; Gideon Koren; Bum-Rak Choi
Enhanced dispersion of repolarization has been proposed as an important mechanism in long QT related arrhythmias. Dispersion can be dynamic and can be augmented with the occurrence of spatially out‐of‐phase action potential duration (APD) alternans (discordant alternans; DA). We investigated the role of tissue heterogeneity in generating DA using a novel transgenic rabbit model of type 2 long QT syndrome (LQT2). Littermate control (LMC) and LQT2 rabbit hearts (n= 5 for each) were retrogradely perfused and action potentials were mapped from the epicardial surface using di‐4‐ANEPPS and a high speed CMOS camera. Spatial dispersion (ΔAPD and Δslope of APD restitution) were both increased in LQT2 compared to LMC (ΔAPD: 34 ± 7 ms vs. 23 ± 6 ms; Δslope:1.14 ± 0.23 vs. 0.59 ± 0.19). Onset of DA under a ramp stimulation protocol was seen at longer pacing cycle length (CL) in LQT2 compared to LMC hearts (206 ± 24 ms vs. 156 ± 5 ms). Nodal lines between regions with APD alternans out of phase from each other were correlated with conduction velocity (CV) alternation in LMC but not in LQT2 hearts. In LQT2 hearts, larger APD dispersion was associated with onset of DA at longer pacing CL. At shorter CLs, closer to ventricular fibrillation induction (VF), nodal lines in LQT2 (n= 2 out of 5) showed persistent complex beat‐to‐beat changes in nodal line formation of DA associated with competing contribution from CV restitution and tissue spatial heterogeneity, increasing vulnerability to conduction block. In conclusion, tissue heterogeneity plays a significant role in providing substrate for ventricular arrhythmia in LQT2 rabbits by facilitating DA onset and contributing to unstable nodal lines prone to reentry formation.
Journal of Immunology | 2006
Jiafen Hu; Xuwen Peng; Todd D. Schell; Lynn R. Budgeon; Nancy M. Cladel; Neil D. Christensen
We have established several HLA-A2.1-transgenic rabbit lines to provide a host to study CD8+ T cell responses during virus infections. HLA-A2.1 protein expression was detected on cell surfaces within various organ tissues. Continuous cultured cells from these transgenic rabbits were capable of presenting both endogenous and exogenous HLA-A2.1-restricted epitopes to an HLA-A2.1-restricted epitope-specific CTL clone. A DNA vaccine containing an HLA-A2.1-restricted human papillomavirus type 16 E7 epitope (amino acid residues 82–90) stimulated epitope-specific CTLs in both PBLs and spleen cells of transgenic rabbits. In addition, vaccinated transgenic rabbits were protected against infection with a mutant cottontail rabbit papillomavirus DNA containing an embedded human papillomavirus type 16 E7/82–90 epitope. Complete protection was achieved using a multivalent epitope DNA vaccine based on epitope selection from cottontail rabbit papillomavirus E1 using MHC class I epitope prediction software. HLA-A2.1-transgenic rabbits will be an important preclinical animal model system to study virus-host interactions and to assess specific targets for immunotherapy.
Circulation Research | 2014
Dmitry Terentyev; Colin M. Rees; Weiyan Li; Leroy L. Cooper; Hitesh K. Jindal; Xuwen Peng; Yichun Lu; Radmila Terentyeva; Katja E. Odening; Jean M. Daley; Kamana Bist; Bum-Rak Choi; Alain Karma; Gideon Koren
Rationale: Loss-of-function mutations in human ether go-go (HERG) potassium channels underlie long QT syndrome type 2 (LQT2) and are associated with fatal ventricular tachyarrhythmia. Previously, most studies focused on plasma membrane–related pathways involved in arrhythmogenesis in long QT syndrome, whereas proarrhythmic changes in intracellular Ca2+ handling remained unexplored. Objective: We investigated the remodeling of Ca2+ homeostasis in ventricular cardiomyocytes derived from transgenic rabbit model of LQT2 to determine whether these changes contribute to triggered activity in the form of early after depolarizations (EADs). Methods and Results: Confocal Ca2+ imaging revealed decrease in amplitude of Ca2+ transients and sarcoplasmic reticulum Ca2+ content in LQT2 myocytes. Experiments using sarcoplasmic reticulum–entrapped Ca2+ indicator demonstrated enhanced ryanodine receptor (RyR)–mediated sarcoplasmic reticulum Ca2+ leak in LQT2 cells. Western blot analyses showed increased phosphorylation of RyR in LQT2 myocytes versus controls. Coimmunoprecipitation experiments demonstrated loss of protein phosphatases type 1 and type 2 from the RyR complex. Stimulation of LQT2 cells with &bgr;-adrenergic agonist isoproterenol resulted in prolongation of the plateau of action potentials accompanied by aberrant Ca2+ releases and EADs, which were abolished by inhibition of Ca2+/calmodulin-dependent protein kinase type 2. Computer simulations showed that late aberrant Ca2+ releases caused by RyR hyperactivity promote EADs and underlie the enhanced triggered activity through increased forward mode of Na+/Ca2+ exchanger type 1. Conclusions: Hyperactive, hyperphosphorylated RyRs because of reduced local phosphatase activity enhance triggered activity in LQT2 syndrome. EADs are promoted by aberrant RyR-mediated Ca2+ releases that are present despite a reduction of sarcoplasmic reticulum content. Those releases increase forward mode Na+/Ca2+ exchanger type 1, thereby slowing repolarization and enabling L-type Ca2+ current reactivation.
American Journal of Physiology-heart and Circulatory Physiology | 2010
Katja E. Odening; Malcolm M. Kirk; Michael Brunner; Ohad Ziv; Peem Lorvidhaya; Gong Xin Liu; Lorraine Schofield; Leonard Chaves; Xuwen Peng; Manfred Zehender; Bum-Rak Choi; Gideon Koren
We have generated transgenic rabbits lacking cardiac slow delayed-rectifier K(+) current [I(Ks); long QT syndrome type 1 (LQT1)] or rapidly activating delayed-rectifier K(+) current [I(Kr); long QT syndrome type 2 (LQT2)]. Rabbits with either genotype have prolonged action potential duration and QT intervals; however, only LQT2 rabbits develop atrioventricular (AV) blocks and polymorphic ventricular tachycardia. We therefore sought to characterize the genotype-specific differences in AV conduction and ventricular refractoriness in LQT1 and LQT2 rabbits. We carried out in vivo electrophysiological studies in LQT1, LQT2, and littermate control (LMC) rabbits at baseline, during isoproterenol infusion, and after a bolus of dofetilide and ex vivo optical mapping studies of the AV node/His-region at baseline and during dofetilide perfusion. Under isoflurane anesthesia, LQT2 rabbits developed infra-His blocks, decremental His conduction, and prolongation of the Wenckebach cycle length. In LQT1 rabbits, dofetilide altered the His morphology and slowed His conduction, resulting in intra-His block, and additionally prolonged the ventricular refractoriness, leading to pseudo-AV block. The ventricular effective refractory period (VERP) in right ventricular apex and base was significantly longer in LQT2 than LQT1 (P < 0.05) or LMC (P < 0.01), with a greater VERP dispersion in LQT2 than LQT1 rabbits. Isoproterenol reduced the VERP dispersion in LQT2 rabbits by shortening the VERP in the base more than in the apex but had no effect on VERP in LQT1. EPS and optical mapping experiments demonstrated genotype-specific differences in AV conduction and ventricular refractoriness. The occurrence of infra-His blocks in LQT2 rabbits under isoflurane and intra-His block in LQT1 rabbits after dofetilide suggest differential regional sensitivities of the rabbit His-Purkinje system to drugs blocking I(Kr) and I(Ks).