Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiahua Xie is active.

Publication


Featured researches published by Jiahua Xie.


BMC Plant Biology | 2012

Identification of wounding and topping responsive small RNAs in tobacco (Nicotiana tabacum

She Tang; Yu Wang; Zefeng Li; Yijie Gui; Bingguang Xiao; Jiahua Xie; Qian-Hao Zhu; Longjiang Fan

BackgroundMicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are two major classes of small RNAs. They play important regulatory roles in plants and animals by regulating transcription, stability and/or translation of target genes in a sequence-complementary dependent manner. Over 4,000 miRNAs and several classes of siRNAs have been identified in plants, but in tobacco only computational prediction has been performed and no tobacco-specific miRNA has been experimentally identified. Wounding is believed to induce defensive response in tobacco, but the mechanism responsible for this response is yet to be uncovered.ResultsTo get insight into the role of small RNAs in damage-induced responses, we sequenced and analysed small RNA populations in roots and leaves from wounding or topping treated tobacco plants. In addition to confirmation of expression of 27 known miRNA families, we identified 59 novel tobacco-specific miRNA members of 38 families and a large number of loci generating phased 21- or 24-nt small RNAs (including ta-siRNAs). A number of miRNAs and phased small RNAs were found to be responsive to wounding or topping treatment. Targets of small RNAs were further surveyed by degradome sequencing.ConclusionsThe expression changes of miRNAs and phased small RNAs responsive to wounding or topping and identification of defense related targets for these small RNAs suggest that the inducible defense response in tobacco might be controlled by pathways involving small RNAs.


Plant Physiology | 2015

Regulation of Nicotine Biosynthesis by an Endogenous Target Mimicry of MicroRNA in Tobacco

Fangfang Li; Weidi Wang; Nan Zhao; Bingguang Xiao; Peijian Cao; Xingfu Wu; Chuyu Ye; Enhui Shen; Jie Qiu; Qian-Hao Zhu; Jiahua Xie; Xueping Zhou; Longjiang Fan

Endogenous target mimecry of an miRNA affects nicotine biosynthesis. The interaction between noncoding endogenous target mimicry (eTM) and its corresponding microRNA (miRNA) is a newly discovered regulatory mechanism and plays pivotal roles in various biological processes in plants. Tobacco (Nicotiana tabacum) is a model plant for studying secondary metabolite alkaloids, of which nicotine accounts for approximately 90%. In this work, we identified four unique tobacco-specific miRNAs that were predicted to target key genes of the nicotine biosynthesis and catabolism pathways and an eTM, novel tobacco miRNA (nta)-eTMX27, for nta-miRX27 that targets QUINOLINATE PHOSPHORIBOSYLTRANSFERASE2 (QPT2) encoding a quinolinate phosphoribosyltransferase. The expression level of nta-miRX27 was significantly down-regulated, while that of QPT2 and nta-eTMX27 was significantly up-regulated after topping, and consequently, nicotine content increased in the topping-treated plants. The topping-induced down-regulation of nta-miRX27 and up-regulation of QPT2 were only observed in plants with a functional nta-eTMX27 but not in transgenic plants containing an RNA interference construct targeting nta-eTMX27. Our results demonstrated that enhanced nicotine biosynthesis in the topping-treated tobacco plants is achieved by nta-eTMX27-mediated inhibition of the expression and functions of nta-miRX27. To our knowledge, this is the first report about regulation of secondary metabolite biosynthesis by an miRNA-eTM regulatory module in plants.


Plant Biotechnology Reports | 2009

Overexpression of human erythropoietin in tobacco does not affect plant fertility or morphology.

Tamba A. Musa; Chiu-Yueh Hung; Diane E. Darlington; David C. Sane; Jiahua Xie

Human erythropoietin (EPO) is a leading product in the biopharmaceutical market, but functional EPO has only been produced in mammalian cells, which limits its application and drives up the production costs. Using plants to produce human proteins may be an alternative way to reduce the cost. However, a recent report demonstrated that overexpression of the human EPO gene (EPO) in tobacco or Arabidopsis rendered males sterile and retarded vegetative growth, which raises concern whether EPO might interfere with hormone levels in transgenic plants. In the present study, we demonstrated that overexpressing EPO with additional 5′-His tag and 3′ ER-retention peptides in tobacco did not cause any developmental defect compared to GUS plants. With our method, all 20 transgenic plants grew on selective medium and, further confirmed by PCR, were fertile. Most of them grew similarly compared to GUS plants. Only one transgenic plant (EPO2) was shorter in plant height but had twice the life span compared to other transgenic plants. When 11 randomly selected EPO plants, along with the abnormal plant EPO2, were subjected to RT-PCR analysis, all of them had detectable EPO transcripts. However, their protein levels varied considerably; seven of them had detectable EPO proteins analyzed by western blot. Our results indicate that overexpressing human EPO protein in plants does not have detrimental effects on growth and development. Our transformation systems allow us to further explore the possibility of glycoengineering tobacco plants for producing functional EPO and its derivatives.


PLOS ONE | 2014

Genome Re-Sequencing of Semi-Wild Soybean Reveals a Complex Soja Population Structure and Deep Introgression

Jie Qiu; Yu Wang; Sanling Wu; Ying-Ying Wang; Chuyu Ye; Xuefei Bai; Zefeng Li; Chenghai Yan; Weidi Wang; Ziqiang Wang; Qingyao Shu; Jiahua Xie; Suk-Ha Lee; Longjiang Fan

Semi-wild soybean is a unique type of soybean that retains both wild and domesticated characteristics, which provides an important intermediate type for understanding the evolution of the subgenus Soja population in the Glycine genus. In this study, a semi-wild soybean line (Maliaodou) and a wild line (Lanxi 1) collected from the lower Yangtze regions were deeply sequenced while nine other semi-wild lines were sequenced to a 3-fold genome coverage. Sequence analysis revealed that (1) no independent phylogenetic branch covering all 10 semi-wild lines was observed in the Soja phylogenetic tree; (2) besides two distinct subpopulations of wild and cultivated soybean in the Soja population structure, all semi-wild lines were mixed with some wild lines into a subpopulation rather than an independent one or an intermediate transition type of soybean domestication; (3) high heterozygous rates (0.19–0.49) were observed in several semi-wild lines; and (4) over 100 putative selective regions were identified by selective sweep analysis, including those related to the development of seed size. Our results suggested a hybridization origin for the semi-wild soybean, which makes a complex Soja population structure.


Plant Molecular Biology Reporter | 2010

Identification of NBS-Type Resistance Gene Homologs in Tobacco Genome

Xiaodong Leng; Bingguang Xiao; Sheng Wang; Yijie Gui; Yu Wang; Xiuping Lu; Jiahua Xie; Yongping Li; Longjiang Fan

Tobacco (Nicotiana tabacum) is an important cash crop and an ideal experimental system for studies on plant–pathogen interaction. The sequenced tobacco genome provides an opportunity for examining resistance gene homologs (RGHs) in the tobacco genome. Thirty nucleotide-binding site-type RGHs were annotated from genomic data, and another 281 putative RGHs were identified via PCR amplification from wild and cultivated tobacco. The newly identified RGHs are similar to other known RGHs, and some were categorized into new groups or branches that are different from known Nicotiana R genes or RGHs. Of the 281RGHs, 146 were identified from a single tobacco genome. We did not find any polymorphism at the RGHs in cultivated accessions, implying that strong domestication selection and/or demographic effects might have caused a sharp reduction in nucleotide diversity. Three positive selection sites were found in several RGH groups, while purifying selection is pervasive in the RGH family. Our results provide a primary RGH pool and several positively selected sites for the further functional validation of resistance genes in tobacco.


Plant Cell Reports | 2012

N -Glycosylation engineering of tobacco plants to produce asialoerythropoietin

Farooqahmed S. Kittur; Chiu-Yueh Hung; Diane E. Darlington; David C. Sane; Jiahua Xie

Erythropoietin (EPO) is a glycoprotein hormone that displays both hematopoietic and tissue-protective functions by binding to two distinct receptors. Recombinant human EPO (rhuEPO) is widely used for the treatment of anemia, but its use for tissue protection is limited because of potentially harmful increases in red blood cell mass when higher doses of rhuEPO are used. Recent studies have shown that asialoerythropoietin (asialo-rhuEPO), a desialylated form of rhuEPO, lacks hematopoietic activity, but retains cytoprotective activity. Currently, a small amount of asialo-rhuEPO is produced by enzymatic desialylation of rhuEPO. The prohibitive cost of rhuEPO, however, is a major limitation of this method. Plants have the ability to synthesize complex N-glycans, but lack enzymatic activities to add sialic acid and β1,4-galactose to N-glycan chains. Plants could be genetically engineered to produce asialo-rhuEPO by introducing human β1,4-galactosyltransferase. The penultimate β1,4-linked galactose residues are important for in vivo biological activity. In this proof of concept study, we show that tobacco plants co-expressing human β1,4-galactosyltransferase and EPO genes accumulated asialo-rhuEPO. Purified asialo-rhuEPO binds to an Erythrina cristagalli lectin column, indicating that its N-glycan chains bear terminal β1,4-galactose residues and that the co-expressed GalT is functionally active. Asialo-rhuEPO interacted with the EPO receptor (EPOR) with similar affinity as rhuEPO, implying that it was properly folded. The strategy described here provides a straightforward way to produce asialo-rhuEPO for research and therapeutic purposes.Key messageN-glycosylation pathway in tobacco plants could be genetically engineered to produce a tissue-protective cytokine, asialoerythropoietin (a desialylated form of human hormone erythropoietin).


International Journal of Microbiology | 2014

Transcriptional Response of Selenopolypeptide Genes and Selenocysteine Biosynthesis Machinery Genes in Escherichia coli during Selenite Reduction

Antonia Y. Tetteh; Katherine H. Sun; Chiu-Yueh Hung; Farooqahmed S. Kittur; Gordon C. Ibeanu; Daniel Williams; Jiahua Xie

Bacteria can reduce toxic selenite into less toxic, elemental selenium (Se0), but the mechanism on how bacterial cells reduce selenite at molecular level is still not clear. We used Escherichia coli strain K12, a common bacterial strain, as a model to study its growth response to sodium selenite (Na2SeO3) treatment and then used quantitative real-time PCR (qRT-PCR) to quantify transcript levels of three E. coli selenopolypeptide genes and a set of machinery genes for selenocysteine (SeCys) biosynthesis and incorporation into polypeptides, whose involvements in the selenite reduction are largely unknown. We determined that 5 mM Na2SeO3 treatment inhibited growth by ∼50% while 0.001 to 0.01 mM treatments stimulated cell growth by ∼30%. Under 50% inhibitory or 30% stimulatory Na2SeO3 concentration, selenopolypeptide genes (fdnG, fdoG, and fdhF) whose products require SeCys but not SeCys biosynthesis machinery genes were found to be induced ≥2-fold. In addition, one sulfur (S) metabolic gene iscS and two previously reported selenite-responsive genes sodA and gutS were also induced ≥2-fold under 50% inhibitory concentration. Our findings provide insight about the detoxification of selenite in E. coli via induction of these genes involved in the selenite reduction process.


Plant Physiology | 2013

Alteration of the alkaloid profile in genetically modified tobacco reveals a role of methylenetetrahydrofolate reductase in nicotine N-demethylation

Chiu-Yueh Hung; Longjiang Fan; Farooqahmed S. Kittur; Kehan Sun; Jie Qiu; She Tang; Bronwyn M. Holliday; Bingguang Xiao; Kent O. Burkey; Lowell P. Bush; Mark A. Conkling; Sanja Roje; Jiahua Xie

Summary: The primary metabolic pathway gene NtMTHFR negatively regulates the secondary metabolism pathway nicotine demethylation gene to potentially recycle methyl groups from alkaloids. Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes the reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine, forming methionine, which is then used for the synthesis of S-adenosyl-methionine, a universal methyl donor for numerous methylation reactions, to produce primary and secondary metabolites. Here, we demonstrate that manipulating tobacco (Nicotiana tabacum) MTHFR gene (NtMTHFR1) expression dramatically alters the alkaloid profile in transgenic tobacco plants by negatively regulating the expression of a secondary metabolic pathway nicotine N-demethylase gene, CYP82E4. Quantitative real-time polymerase chain reaction and alkaloid analyses revealed that reducing NtMTHFR expression by RNA interference dramatically induced CYP82E4 expression, resulting in higher nicotine-to-nornicotine conversion rates. Conversely, overexpressing NtMTHFR1 suppressed CYP82E4 expression, leading to lower nicotine-to-nornicotine conversion rates. However, the reduced expression of NtMTHFR did not affect the methionine and S-adenosyl-methionine levels in the knockdown lines. Our finding reveals a new regulatory role of NtMTHFR1 in nicotine N-demethylation and suggests that the negative regulation of CYP82E4 expression may serve to recruit methyl groups from nicotine into the C1 pool under C1-deficient conditions.


Scientific Reports | 2016

Gibberellin deficiency is responsible for shy-flowering nature of Epipremnum aureum.

Chiu-Yueh Hung; Jie Qiu; Ying-Hsuan Sun; Jianjun Chen; Farooqahmed S. Kittur; Richard J. Henny; Gulei Jin; Longjiang Fan; Jiahua Xie

Epipremnum aureum is an extremely popular houseplant belonging to the Araceae family of angiosperms, but it does not flower either in the wild or under cultivation. We uncovered the potential causes of its shy-flowering nature by building the transcriptome using next-generation sequencing and identifying floral-related genes that are differentially expressed between vertical growth (VG, adult) and horizontal growth (HG, juvenile) plants. Transcripts of the gibberellin (GA) biosynthetic gene EaGA3ox1 and GA-responsive floral meristem identity gene EaLFY were absent in both VG and HG plants, suggesting that a deficiency of bioactive GAs may be responsible for its shy-flowering nature. This hypothesis is supported by undetectable or low levels of three bioactive GAs, and exogenous GA3 triggered flowering in both plants. Our study resolves the mystery why E. aureum fails to flower, and reveals the positive role of GAs in floral transition in perennials.


International Journal of Biological Macromolecules | 2015

Two-step purification procedure for recombinant human asialoerythropoietin expressed in transgenic plants

Farooqahmed S. Kittur; Elena Arthur; Maikhanh Nguyen; Chiu-Yueh Hung; David C. Sane; Jiahua Xie

Asialoerythropoietin (asialo-EPO) is a desialylated form of human glycoprotein hormone erythropoietin (EPO), which has been reported to be neuro-, cardio-, and renoprotective in animal models of organ injuries. Since the current method of production of asialo-EPO from mammalian cell-made recombinant human EPO (rhuEPO(M)) by enzymatic desialylation is not commercially viable, we and others used plant-based expression systems to produce recombinant human asialo-EPO (asialo-rhuEPO(P)). Despite achieving high expression levels in plants, its purification from plant extracts has remained a greater challenge, which has prevented studying its tissue-protective effects and translating it into clinical practice. In this study, a procedure was developed to purify asialo-rhuEPO(P) from transgenic tobacco leaf tissues in two steps: ion-exchange chromatography based on its high pI (8.75) to separate it from acidic plant proteins, and immunoaffinity chromatography to obtain pure asialo-rhuEPO(P). Using this process, up to 31% of the asialo-rhuEPO(P) could be recovered to near homogeneity from plant extracts. This work demonstrates that asialo-rhuEPO(P) expressed in tobacco plants could be purified in high yield and purity using minimal steps, which might be suitable for scale-up. Furthermore, the ion-exchange chromatography step together with the use of protein-specific antibody column could be used to purify a wide variety of basic recombinant proteins from transgenic leaf tissues.

Collaboration


Dive into the Jiahua Xie's collaboration.

Top Co-Authors

Avatar

Chiu-Yueh Hung

North Carolina Central University

View shared research outputs
Top Co-Authors

Avatar

Farooqahmed S. Kittur

North Carolina Central University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diane E. Darlington

North Carolina Central University

View shared research outputs
Top Co-Authors

Avatar

Kent O. Burkey

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Bronwyn M. Holliday

North Carolina Central University

View shared research outputs
Researchain Logo
Decentralizing Knowledge