Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jian-Fang Gui is active.

Publication


Featured researches published by Jian-Fang Gui.


Developmental and Comparative Immunology | 2012

Molecular regulation of interferon antiviral response in fish.

Yi-Bing Zhang; Jian-Fang Gui

Interferon (IFN) response is the first line of host defense against virus infection. The recent years have witnessed tremendous progress in understanding of fish IFN antiviral response. Varied number of IFN genes has been identified in different fish species but obviously, they do not show a one-to-one orthologous relationship with mammalian IFN homologs. These genes are divided into two groups with different abilities to induce downstream gene expression through binding to different receptor complexes. Consistently, some fish IFN-stimulated genes such as Mx and PKR have been confirmed for their antiviral effects. In this review, we focus on how fish cells respond to IFNs and how fish IFNs are triggered through TLR pathway and RLR pathway. We highlight the roles of IRF3 and IRF7 in activation of fish IFN response. In addition, the unique mechanisms underlying IRF3/7-dependent fish IFN response and auto-regulation of fish IFN gene expression are discussed.


Journal of Immunology | 2011

Fish MITA Serves as a Mediator for Distinct Fish IFN Gene Activation Dependent on IRF3 or IRF7

Fan Sun; Yi-Bing Zhang; Ting-Kai Liu; Jun Shi; Bing Wang; Jian-Fang Gui

In mammals, cytosolic sensors retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) activate multiple signaling cascades initiating IFN-α/β expression. IFN regulatory factor 3 (IRF3) is required for the activation of IFN-β, which, in turn, primes the expression of most IFN-α genes by IFN-induced IRF7 through the STAT1 pathway. In fish, RIG-I overexpression inhibits virus infection by induction of IFN response; however, the subtle signaling cascade mechanism remains to be identified. In this study, we clone an ortholog of MITA, a recently identified adaptor responsible for RLR pathway, from crucian carp (Carassius auratus L.), and demonstrate its ability to suppress viral replication through IRF3/7-dependent IFN response. The pivotal signaling molecules of RLR pathway, including RIG-I, melanoma differentiation-associated gene 5, laboratory of genetics and physiology 2, and TANK-binding kinase 1, are also cloned and characterized, confirming that the RLR-mediated IFN activation is conserved from fish to mammals. Further characterization of distinct IFN gene activation reveals that zebrafish IFN1 and IFN3 are induced by the MITA pathway but are dependent on distinct transcription factors. Whereas fish IFN genes cannot be classified into IFN-α or IFN-β, zebrafish IFN1 is primarily regulated by IRF3, thereby resembling that of IFN-β, and zebrafish IFN3 is regulated by IRF7, thereby resembling of those of IFN-αs. In contrast with mammalian IFN-α/β, zebrafish IFN1 and IFN3 are induced by the basally expressed IRF3 or IRF7, both of which are upregulated by IFN and virus infection. Collectively, these data suggest that IFN genes in fish and mammals have evolved independently to acquire a similar mechanism triggering their expression.


Journal of Molecular Evolution | 2000

Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelio Bloch) as revealed by RAPD assays.

Li Zhou; Yang Wang; Jian-Fang Gui

Abstract. Sex evolution has been a debating focus in evolutionary genetics. In lower vertebrates of reptiles, amphibians, and fish, a species or a bioform reproduces either sexually or asexually but never both. A few species were found to consist of all females in fish. These all-female species can propagate by asexual reproduction modes, such as gynogenesis and hybridogenesis. However, the coexistence of sexuality and asexuality in a single species was recently noted only in a cyprinid fish silver crucian carp, Carassius auratus gibelio. This fish had been demonstrated to be capable of gynogenesis stimulated by sperm from other related species. Surprisingly, natural populations of this fish consist of a minor but significant portion (approx. 20%) of males. As different clones with specific phenotypic and genetic characteristics have been found, and RAPD markers specific to each clone have recently been identified, this fish offers many advantages for analyzing whether or not genetic recombination occurs between different clones. In this study, artificial propagation was performed in clone F and clone D. Ovulated eggs from clone F were divided into two parts and respectively inseminated with sperm from a clone D male and from a red common carp (Cyprinus carpio) male. The control clone D individuals were selected from gynogenetic offspring of clone D activated by sperm of red common carp. The phenotype and sex ratio in the experimental groups were also observed. Using RAPD molecular markers, which allow for reliable discrimination and genetic analysis of different clones, we have revealed direct molecular evidence for gonochoristic reproduction in the gynogenetic silver crucian carp and confirmed a previous hypothesis that the silver crucian carp might reproduce both gynogenetically and gonochoristically. Therefore, we conclude that the silver crucian carp possesses two reproductive modes, i.e., gynogenetic and gonochoristic reproduction. The response mechanism of two reproductive development modes may be the first discovery in vertebrates. Additionally, we discuss the evolutionary implication between gynogenetic and gonochoristic reproduction modes and the contribution of the minor proportion of males to genetic flexibility in the gynogenetic silver crucian carp.


Developmental Dynamics | 2005

Differential expression of vasa RNA and protein during spermatogenesis and oogenesis in the gibel carp (Carassius auratus gibelio), a bisexually and gynogenetically reproducing vertebrate

Hongyan Xu; Jian-Fang Gui; Yunhan Hong

The RNA helicase Vasa is a germ cell marker in animals, and its homolog in vertebrates to date has been limited to bisexual reproduction. We cloned and characterized CagVasa, a Vasa homolog from the gibel carp, a fish that reproduces bisexually or gynogenetically. CagVasa possesses 14 RGG repeats and eight conserved motifs of Vasa proteins. In bisexually reproducing gibel carp, vasa is maternally supplied and its zygotic expression is restricted to gonads. By in situ hybridization on testicular sections, vasa is low in spermatogonia, high in primary spermatocytes, reduced in secondary spermatocytes, but disappears in spermatids and sperm. In contrast, vasa persists throughout oogenesis, displaying low–high–low levels from oogonia over vitellogenic oocytes to maturing oocytes. A rabbit anti‐Vasa antibody (αVasa) was raised against the N‐terminal CagVasa for fluorescent immunohistochemistry. On testicular sections, Vasa is the highest in spermatogonia, reduced in spermatocytes, low in spermatids, and absent in sperm. In the ovary, Vasa is the highest in oogonia but persists throughout oogenesis. Subcellular localization of vasa and its protein changes dynamically during oogenesis. The αVasa stains putative primordial germ cells in gibel carp fry. It detects gonadal germ cells also in several other teleosts. Therefore, Cagvasa encodes a Vasa ortholog that is differentially expressed in the testis and ovary. Interestingly, the αVasa in combination with a nuclear dye can differentiate critical stages of spermatogenesis and oogenesis in fish. The cross‐reactivity and the ability to stain stage‐specific germ cells make this antibody a useful tool to identify fish germ cell development and differentiation. Developmental Dynamics 233:872–882, 2005.


Journal of Immunology | 2010

Characterization of Fish IRF3 as an IFN-Inducible Protein Reveals Evolving Regulation of IFN Response in Vertebrates

Fan Sun; Yi-Bing Zhang; Ting-Kai Liu; Li Gan; Fei-Fei Yu; Ying Liu; Jian-Fang Gui

In mammals, IFN regulatory factor (IRF) 3 is a critical player in modulating transcription of type I IFN and IFN-stimulated genes (ISGs). In this study, we describe the roles of crucian carp (Carassius auratus L.) IRF3 in activating fish IFN and ISGs. Fish IRF3 exhibits a large sequence divergence from mammalian orthologs. Whereas mammalian IRF3 is constitutively expressed, fish IRF3 protein is significantly upregulated by IFN, poly-IC, and other stimuli known as IFN inducers in mammals. The IFN-inducible property of fish IRF3 is consistent with the comparative analysis of 5′ flanking regulatory region of vertebrate IRF3 genes, which reveals the presence of typical IFN-stimulated response elements in fish and amphibians, but an absence in tetrapods. Furthermore, either IFN or poly-IC induces phosphorylation and cytoplasmic-to-nuclear translocation of IRF3, which seems essential for its function in that phosphomimic active IRF3 exhibits stronger transactivation than wild type IRF3. Finally, overexpression of fish IRF3 activates production of IFN that in turn triggers ISG transcription through Stat1 pathway, whereas transfection of dominant negative mutant IRF3-DN abrogates poly-IC induction of ISGs, probably owing to blockade of IFN production. Therefore, regulation of IFN response by vertebrate IRF3 is another ancient trait. These data provide evidence of the evolving function of vertebrate IRF3 on regulating IFN response.


Molecular and Cellular Endocrinology | 2007

Differential and spermatogenic cell-specific expression of DMRT1 during sex reversal in protogynous hermaphroditic groupers

Wei Xia; Li Zhou; Bo Yao; Chuang-Ju Li; Jian-Fang Gui

DMRT1 has been suggested to play different roles in sex determination and gonad differentiation, because different expression patterns have been reported among different vertebrates. The groupers, since their gonads first develop as ovary and then reverse into testis, have been thought as good models to study sex differentiation and determination. In this study, we cloned the full-length cDNAs of DMRT1 gene from orange-spotted grouper (Epinephelus coioides), and prepared corresponding anti-EcDMRT1 antiserum to study the relationship of DMRT1 to sex reversal. One important finding is that the grouper DMRT1 is not only differentially expressed in different stage gonads, but also restricted to specific stages and specific cells of spermatogenesis. Grouper DMRT1 protein exists only in spermatogonia, primary spermatocytes and secondary spermatocytes, but not in the supporting Sertoli cells. Moreover, we confirmed that EcSox3 is expressed not only in oogonia and different stage oocytes, but also in Sertoli cells and spermatogonia, and EcSox9 is expressed only in Sertoli cells. The data suggested that grouper DMRT1 might be a more specific sex differentiation gene for spermatogenesis, and play its role at the specific stages from spermatogonia to spermatocytes. In addition, no introns were found in the grouper DMRT1, and no duplicated DMRT1 genes were detected. The finding implicates that the intronless DMRT1 that is able to undergo rapid transcriptional turnover might be a significant gene for stimulating spermatogenesis in the protogynous hermaphroditic gonad.


Journal of Virology | 2008

Functional Domains and the Antiviral Effect of the Double-Stranded RNA-Dependent Protein Kinase PKR from Paralichthys olivaceus

Rong Zhu; Yi-Bing Zhang; Qi-Ya Zhang; Jian-Fang Gui

ABSTRACT The double-stranded RNA (dsRNA)-dependent protein kinase PKR is thought to mediate a conserved antiviral pathway by inhibiting viral protein synthesis via the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2α). However, little is known about the data related to the lower vertebrates, including fish. Recently, the identification of PKR-like, or PKZ, has addressed the question of whether there is an orthologous PKR in fish. Here, we identify the first fish PKR gene from the Japanese flounder Paralichthys olivaceus (PoPKR). PoPKR encodes a protein that shows a conserved structure that is characteristic of mammalian PKRs, having both the N-terminal region for dsRNA binding and the C-terminal region for the inhibition of protein translation. The catalytic activity of PoPKR is further evidence that it is required for protein translation inhibition in vitro. PoPKR is constitutively transcribed at low levels and is highly induced after virus infection. Strikingly, PoPKR overexpression increases eIF2α phosphorylation and inhibits the replication of Scophthalmus maximus rhabdovirus (SMRV) in flounder embryonic cells, whereas phosphorylation and antiviral effects are impaired in transfected cells expressing the catalytically inactive PKR-K421R variant, indicating that PoPKR inhibits virus replication by phosphorylating substrate eIF2α. The interaction between PoPKR and eIF2α is demonstrated by coimmunoprecipitation assays, and the transfection of PoPKR-specific short interfering RNA further reveals that the enhanced eIF2α phosphorylation is catalyzed by PoPKR during SMRV infection. The current data provide significant evidence for the existence of a PKR-mediated antiviral pathway in fish and reveal considerable conservation in the functional domains and the antiviral effect of PKR proteins between fish and mammals.


Mechanisms of Development | 2009

Medaka vasa is required for migration but not survival of primordial germ cells

Mingyou Li; Ni Hong; Hongyan Xu; Meisheng Yi; Chang Ming Li; Jian-Fang Gui; Yunhan Hong

Vasa is essential for germline development. However, the precise processes in which vasa involves vary considerably in diverse animal phyla. Here we show that vasa is required for primordial germ cell (PGC) migration in the medakafish. vasa knockdown by two morpholinos led to the PGC migration defect that was rescued by coinjection of vasa RNA. Interestingly, vasa knockdown did not alter the PGC number, identity, proliferation and motility even at ectopic locations. We established a cell culture system for tracing PGCs at the single cell level in vitro. In this culture system, control and morpholino-injected gastrulae produced the same PGC number and the same time course of PGC survival. Importantly, vasa-depleted PGCs in culture had similar motility and locomotion to normal PGCs. Expression patterns of wt1a, sdf1b and cxcr4b in migratory tissues remained unchanged by vasa knockdown. By chimera formation we show that PGCs from vasa-depleted blastulae failed to migrate properly in the normal environment, whereas control PGCs migrated normally in vasa-disrupted embryos. Furthermore, ectopic PGCs in vasa-depleted embryos also retained all the PGC properties examined. Taken together, medaka vasa is cell-autonomously required for PGC migration, but dispensable to PGC proliferation, motility, identity and survival.


Gene | 2001

Differential gene expression in fully-grown oocytes between gynogenetic and gonochoristic crucian carps

Jing Xie; Jian‐Jun Wen; Bo Chen; Jian-Fang Gui

Silver crucian carp (Carassius auratus gibelio) is a unique triploid bisexual species that can reproduce by gynogenesis. As all other gynogenetic animals, it keeps its chromosome integrity by inhibiting the first meiosis division (no extrusion of the first pole body). To understand the molecular events governing this reproduction mode, suppression subtractive hybridization was used to identify the genes differentially expressed in fully-grown oocytes of the gynogenetic and gonochoristic crucian carp (gyno-carp and gono-carp). From two specific subtractive cDNA libraries, the clones screened out by dot blots and virtual Northern blots were chosen to clone full-length cDNA by RACE. Four differentially expressed genes were obtained. Two are novel genes and are expressed specifically in the oocytes. The gyno-carp stores much more mRNA of cyclin A2, a new member of the fish A-type cyclin gene, in its fully-grown oocyte than in the gono-carp. The last gene is histone H2A. The histone H2As of these two closely related crucian carps are quite different in the C-terminus. Preliminary characterization of the four genes has been analyzed by nucleotide and deduced amino acid sequence and Northern analysis.


Immunity | 2012

Transcription of Il17 and Il17f Is Controlled by Conserved Noncoding Sequence 2

Xiaohu Wang; Yi-Bing Zhang; Xuexian O. Yang; Roza Nurieva; Seon Hee Chang; Sandra S. Ojeda; Hong S. Kang; Kimberly S. Schluns; Jian-Fang Gui; Anton M. Jetten; Chen Dong

T helper 17 (Th17) cells specifically transcribe the Il17 and Il17f genes, which are localized in the same chromosome region, but the underlying mechanism is unclear. Here, we report a cis element that we previously named conserved noncoding sequence 2 (CNS2) physically interacted with both Il17 and Il17f gene promoters and was sufficient for regulating their selective transcription in Th17 cells. Targeted deletion of CNS2 resulted in impaired retinoic acid-related orphan receptor gammat (RORγt)-driven IL-17 expression in vitro. CNS2-deficient T cells also produced substantially decreased amounts of IL-17F. These cytokine defects were associated with defective chromatin remodeling in the Il17-Il17f gene locus, possibly because of effects on CNS2-mediated recruitment of histone-modifying enzymes p300 and JmjC domain-containing protein 3 (JMJD3). CNS2-deficient animals were also shown to be resistant to experimental autoimmune encephalomyelitis (EAE). Our results thus suggest that CNS2 is sufficient and necessary for Il17 and optimal Il17f gene transcription in Th17 cells.

Collaboration


Dive into the Jian-Fang Gui's collaboration.

Top Co-Authors

Avatar

Li Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qi-Ya Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhi Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yi-Bing Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yang Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jie Mei

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiao-Juan Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xi-Yin Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Rong Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yunhan Hong

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge