Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qi-Ya Zhang is active.

Publication


Featured researches published by Qi-Ya Zhang.


Journal of Virology | 2008

Functional Domains and the Antiviral Effect of the Double-Stranded RNA-Dependent Protein Kinase PKR from Paralichthys olivaceus

Rong Zhu; Yi-Bing Zhang; Qi-Ya Zhang; Jian-Fang Gui

ABSTRACT The double-stranded RNA (dsRNA)-dependent protein kinase PKR is thought to mediate a conserved antiviral pathway by inhibiting viral protein synthesis via the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2α). However, little is known about the data related to the lower vertebrates, including fish. Recently, the identification of PKR-like, or PKZ, has addressed the question of whether there is an orthologous PKR in fish. Here, we identify the first fish PKR gene from the Japanese flounder Paralichthys olivaceus (PoPKR). PoPKR encodes a protein that shows a conserved structure that is characteristic of mammalian PKRs, having both the N-terminal region for dsRNA binding and the C-terminal region for the inhibition of protein translation. The catalytic activity of PoPKR is further evidence that it is required for protein translation inhibition in vitro. PoPKR is constitutively transcribed at low levels and is highly induced after virus infection. Strikingly, PoPKR overexpression increases eIF2α phosphorylation and inhibits the replication of Scophthalmus maximus rhabdovirus (SMRV) in flounder embryonic cells, whereas phosphorylation and antiviral effects are impaired in transfected cells expressing the catalytically inactive PKR-K421R variant, indicating that PoPKR inhibits virus replication by phosphorylating substrate eIF2α. The interaction between PoPKR and eIF2α is demonstrated by coimmunoprecipitation assays, and the transfection of PoPKR-specific short interfering RNA further reveals that the enhanced eIF2α phosphorylation is catalyzed by PoPKR during SMRV infection. The current data provide significant evidence for the existence of a PKR-mediated antiviral pathway in fish and reveal considerable conservation in the functional domains and the antiviral effect of PKR proteins between fish and mammals.


Archives of Virology | 2007

Characterization of complete genome sequence of the spring viremia of carp virus isolated from common carp (Cyprinus carpio) in China.

Yong Teng; Honghui Liu; J. Q. Lv; W. H. Fan; Qi-Ya Zhang; Qiwei Qin

SummaryThe complete genome of spring viraemia of carp virus (SVCV) strain A-1 isolated from cultured common carp (Cyprinus carpio) in China was sequenced and characterized. Reverse transcription-polymerase chain reaction (RT-PCR) derived clones were constructed and the DNA was sequenced. It showed that the entire genome of SVCV A-1 consists of 11,100 nucleotide base pairs, the predicted size of the viral RNA of rhabdoviruses. However, the additional insertions in bp 4633–4676 and bp 4684–4724 of SVCV A-1 were different from the other two published SVCV complete genomes. Five open reading frames (ORFs) of SVCV A-1 were identified and further confirmed by RT-PCR and DNA sequencing of their respective RT-PCR products. The 5 structural proteins encoded by the viral RNA were ordered 3′-N-P-M-G-L-5′. This is the first report of a complete genome sequence of SVCV isolated from cultured carp in China. Phylogenetic analysis indicates that SVCV A-1 is closely related to the members of the genus Vesiculovirus, family Rhabdoviridae.


PLOS ONE | 2010

Antibacterial and Antiviral Roles of a Fish β-Defensin Expressed Both in Pituitary and Testis

Junyan Jin; Li Zhou; Yang Wang; Zhi Li; Jiu-Gang Zhao; Qi-Ya Zhang; Jian-Fang Gui

Defensins are a group of cationic peptides that exhibit broad-spectrum antimicrobial activity. In this study, we cloned and characterized a β-defensin from pituitary cDNA library of a protogynous hermaphroditic orange-spotted grouper (Epinephelus coioides). Interestingly, the β-defensin was shown to be dominantly expressed in pituitary and testis by RT-PCR and Western blot analysis, and its transcript level is significantly upregulated in reproduction organs from intersexual gonad to testis during the natural and artificial sex reversal. Promoter sequence and the responsible activity region analyses revealed the pituitary-specific POU1F1a transcription binding site and testis-specific SRY responsible site, and demonstrated that the pituitary-specific POU1F1a transcription binding site that locates between −180 and −208 bp is the major responsible region of grouper β-defensin promoter activity. Immunofluorescence localization observed its pituicyte expression in pituitary and spermatogonic cell expression in testis. Moreover, both in vitro antibacterial activity assay of the recombinant β-defensin and in vivo embryo microinjection of the β-defensin mRNA were shown to be effective in killing Gram-negative bacteria. And, its antiviral role was also demonstrated in EPC cells transfected with the β-defensin construct. Additionally, the antibacterial activity was sensitive to concentrations of Na+, K+, Ca2+ and Mg2+. The above intriguing findings strongly suggest that the fish β-defensin might play significant roles in both innate immunity defense and reproduction endocrine regulation.


Developmental Biology | 2008

C1q-like inhibits p53-mediated apoptosis and controls normal hematopoiesis during zebrafish embryogenesis.

Jie Mei; Qi-Ya Zhang; Zhi Li; Shuo Lin; Jian-Fang Gui

Except for the complement C1q, the immunological functions of other C1q family members have remained unclear. Here we describe zebrafish C1q-like, whose transcription and translation display a uniform distribution in early embryos, and are restricted to mid-hind brain and eye in later embryos. In vitro studies showed that C1q-like could inhibit the apoptosis induced by ActD and CHX in EPC cells, through repressing caspase 3/9 activities. Moreover, its physiological roles were studied by morpholino-mediated knockdown in zebrafish embryogenesis. In comparison with control embryos, the C1q-like knockdown embryos display obvious defects in the head and craniofacial development mediated through p53-induced apoptosis, which was confirmed by the in vitro transcribed C1q-like mRNA or p53 MO co-injection. TUNEL assays revealed extensive cell death, and caspase 3/9 activity measurement also revealed about two folds increase in C1q-like morphant embryos, which was inhibited by p53 MO co-injection. Real-time quantitative PCR showed the up-regulation expression of several apoptosis regulators such as p53, mdm2, p21, Bax and caspase 3, and down-regulation expression of hbae1 in the C1q-like morphant embryos. Knockdown of C1q-like in zebrafish embryos decreased hemoglobin production and impaired the organization of mesencephalic vein and other brain blood vessels. Interestingly, exposure of zebrafish embryos to UV resulted in an increase in mRNA expression of C1q-like, whereas over-expression of C1q-like was not enough resist to the damage. Furthermore, C1q-like transcription was up-regulated in response to pathogen Aeromonas hydrophila, and embryo survival significantly decreased in the C1q-like morphants after exposure to the bacteria. The data suggested that C1q-like might play an antiapoptotic and protective role in inhibiting p53-dependent and caspase 3/9-mediated apoptosis during embryogenesis, especially in the brain development, and C1q-like should be a novel regulator of cell survival during zebrafish embryogenesis.


Fish & Shellfish Immunology | 2009

Effect of β-glucan on activity of antioxidant enzymes and Mx gene expression in virus infected grass carp

Yu-sin Kim; Fei Ke; Qi-Ya Zhang

The effects of beta-glucan, an immunostimulatory agent, on the superoxide dismutase (SOD) and catalase (CAT) activities of erythrocytes and Mx gene expression were studied from grass carp that were challenged with grass carp hemorrhage virus (GCHV). The SOD and CAT activities in erythrocytes and Mx gene expression in spleen from the fish were detected by spectrophotometry and RT-PCR, respectively. Negative control fish were injected with PBS; positive control groups were injected with either beta-glucan or GCHV only; and the experimental groups were pre-injected with beta-glucan 15 days prior to injection with GCHV. The results show that the SOD and CAT activities were higher in fish injected with beta-glucan for 15 days than the negative control group injected with PBS. The SOD and CAT activities significantly decreased when the fish were challenged with GCHV, but it was higher in the group pre-treated with beta-glucan than in infected fish not pre-treated, 15 days after GCHV infection. Mx gene expression levels increased during the early stages (at 12 h and 36 h) of GCHV infection, and it remained at higher levels from the 6th till the 10th day in the beta-glucan pre-treated group, but it was falling from the 6th day in the beta-glucan untreated group. The GCHV-infected group pre-treated with beta-glucan had a higher survival rate (60%) than the group not pre-treated with beta-glucan (20%), suggesting that beta-glucan possesses or enhances anti-viral responses.


Apoptosis | 2007

Mitochondrion-mediated apoptosis induced by Rana grylio virus infection in fish cells

Youhua Huang; Xiaohong Huang; Jian-Fang Gui; Qi-Ya Zhang

A fish cell line, fathead minnow (FHM) cell, was used to investigate the alteration of mitochondrial dynamics and the mechanism of apoptosis under Rana grylio virus (RGV) infection. Microscopy observations, flow-cytometry analysis and molecular marker detection revealed the apoptotic fate of the RGV-infected cells. Some typical apoptotic characteristics, such as chromatin condensation, DNA fragmentation and mitochondrial fragmentation, were observed, and significantly morphological changes of mitochondria, including size, shape, internal structure and distribution, were revealed. The mitochondria in RGV-infected cells were aggregated around the viromatrix, and the aggregation could be blocked by colchicine. Moreover, the Δψm collapse was induced, and caspase-9 and caspase-3 were activated in the RGV-infected cells. In addition, NF-κB activation and intracellular Ca2+ increase were also detected at different times after infection. The data revealed the detailed dynamics of mitochondrion-mediated apoptosis induced by an iridovirus, and provided the first report on mitochondrial fragmentation during virus-induced apoptosis in fish cells.


Journal of Immunology | 2014

Zebrafish IRF1 Regulates IFN Antiviral Response through Binding to IFN phi 1 and IFN phi 3 Promoters Downstream of MyD88 Signaling

Hui Feng; Yi-Bing Zhang; Qi-Min Zhang; Zhi Li; Qi-Ya Zhang; Jian-Fang Gui

In mammals, type I IFNs (mainly IFN-α/β) are primarily regulated by transcription factors of the IFN regulatory factor (IRF) family. Fish IFNs do not show a one-to-one orthologous relationship with mammalian type I IFN homologues. Using a bacterial one-hybrid reporter screening system and an overexpression approach to explore the molecular mechanism underlying fish IFN induction, we identified zebrafish Danio rerio IRF (DrIRF)1 as a positive regulator of the fish IFN antiviral response. Among 12 zebrafish IRF family genes, DrIRF1 is most abundant in zebrafish immune tissues, including head kidney and spleen; upon virus infection, it is one of most significantly induced genes. Overexpression of DrIRF1 induces the expression of IFN and IFN-stimulated genes, hence protecting epithelioma papulosum cyprini cells against spring viremia of carp virus infection. As a transcription factor with constitutively nuclear retention, DrIRF1 directly binds to the IFN-stimulated regulatory element/IRF-binding element sites of zebrafish IFN promoters, which are dependent on four conserved amino acids of the N-terminal DNA-binding domain helix α3 motif. Mutation of either residue reveals a differential requirement for DrIRF1-mediated activation of zebrafish IFNϕ1 and IFNϕ3 promoters. Notably, C-terminal phosphorylation of DrIRF1 is observed and is not required for in vitro binding of DrIRF1 to fish IFN promoters. Unlike DrIRF3 and DrIRF7, which are responsible for differential expression of zebrafish IFNϕ1 and IFNϕ3 through the retinoic acid–inducible gene I–like receptor pathway, DrIRF1 works in concert with MyD88 to activate zebrafish IFNϕ3 but not IFNϕ1. These results provide insights into the evolving function of IRF1 as a positive IFN regulator.


Aquaculture | 1999

Studies on morphogenesis and cellular interactions of Rana grylio virus in an infected fish cell line

Qi-Ya Zhang; Zhen-Qiu Li; Jian-Fang Gui

A pathogenic virus (RGV), isolated from diseased pig frog Rana grylio with lethal syndrome, was investigated with regard to morphogenesis and cellular interactions in EPC cells, a cell Line from fish. Different stages of virus amplification, maturation and assembly were observed at nucleus, cytoplasm and cellular membranes. The matured virus particles, were not only distributed diffusely in nucleus, cytoplasm and cellular surface, but also aggregated as pseudocrystalline arrays in the cytoplasm. Virions were released by budding from the plasma membranes, or following cell lysis. Various types of cell damage, such as small vacuoles, spherical inclusions, and swollen and empty mitochondria, were also found. Some typical characteristics of RGV, such as the symmetrical shape of the virions, replication process involving both nuclear and cytoplasmic phases, budding release from cellular membrane and intracellular membrane, viromatrix and paracrystalline aggregation in cytoplasm, and its acute pathogenic effects, were observed to be similar to that of other iridoviruses. Therefore, the RGV appears to be a member of the Iridoviridae based on these studies


Veterinary Research | 2013

Genome architecture changes and major gene variations of Andrias davidianus ranavirus (ADRV)

Zhong-Yuan Chen; Jian-Fang Gui; Xiao-Chan Gao; Chao Pei; Yijiang Hong; Qi-Ya Zhang

Ranaviruses are emerging pathogens that have led to global impact and public concern. As a rarely endangered species and the largest amphibian in the world, the Chinese giant salamander, Andrias davidianus, has recently undergone outbreaks of epidemic diseases with high mortality. In this study, we isolated and identified a novel ranavirus from the Chinese giant salamanders that exhibited systemic hemorrhage and swelling syndrome with high death rate in China during May 2011 to August 2012. The isolate, designated Andrias davidianus ranavirus (ADRV), not only could induce cytopathic effects in different fish cell lines and yield high viral titers, but also caused severely hemorrhagic lesions and resulted in 100% mortality in experimental infections of salamanders. The complete genome of ADRV was sequenced and compared with other sequenced amphibian ranaviruses. Gene content and phylogenetic analyses revealed that ADRV should belong to an amphibian subgroup in genus Ranavirus, and is more closely related to frog ranaviruses than to other salamander ranaviruses. Homologous gene comparisons show that ADRV contains 99%, 97%, 94%, 93% and 85% homologues in RGV, FV3, CMTV, TFV and ATV genomes respectively. In addition, several variable major genes, such as duplicate US22 family-like genes, viral eukaryotic translation initiation factor 2 alpha gene and novel 75L gene with both motifs of nuclear localization signal (NLS) and nuclear export signal (NES), were predicted to contribute to pathogen virulence and host susceptibility. These findings confirm the etiologic role of ADRV in epidemic diseases of Chinese giant salamanders, and broaden our understanding of evolutionary emergence of ranaviruses.


Journal of General Virology | 2008

Identification and characterization of a novel envelope protein in Rana grylio virus

Zhe Zhao; Fei Ke; Youhua Huang; Jiu-Gang Zhao; Jian-Fang Gui; Qi-Ya Zhang

Viral envelope proteins have been proposed to play significant roles in virus infection and assembly. In this study, an envelope protein gene, 53R, was cloned and characterized from Rana grylio virus (RGV), a member of the family Iridoviridae. Database searches found its homologues in all sequenced iridoviruses, and sequence alignment revealed several conserved structural features shared by virus capsid or envelope proteins: a myristoylation site, two predicted transmembrane domains and two invariant cysteine residues. Subsequently, RT-PCR and Western blot detection revealed that the transcripts encoding RGV 53R and the protein itself appeared late during infection of fathead minnow cells and that their appearance was blocked by viral DNA replication inhibitor, indicating that RGV 53R is a late expression gene. Moreover, immunofluorescence localization found an association of 53R with virus factories in RGV-infected cells, and this association was further confirmed by expressing a 53R-GFP fusion protein in pEGFP-N3/53R-transfected cells. Furthermore, detergent extraction and Western blot detection confirmed that RGV 53R was associated with virion membrane. Therefore, the current data suggest that RGV 53R is a novel viral envelope protein and that it may play an important role in virus assembly. This is thought to be the first report on a viral envelope protein that is conserved in all sequenced iridoviruses.

Collaboration


Dive into the Qi-Ya Zhang's collaboration.

Top Co-Authors

Avatar

Jian-Fang Gui

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fei Ke

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yi-Bing Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhong-Yuan Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Rong Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiao-Chan Gao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhe Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiu-Ping Yuan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zheng-Qiu Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guang-Zhou Zhou

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge