Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jian-fei Kuang is active.

Publication


Featured researches published by Jian-fei Kuang.


Planta | 2011

Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions.

Lei Chen; Hai-Ying Zhong; Jian-fei Kuang; Jian-guo Li; Wang-jin Lu; Jian-ye Chen

Reverse transcription quantitative real-time PCR (RT-qPCR) is a sensitive technique for quantifying gene expression, but its success depends on the stability of the reference gene(s) used for data normalization. Only a few studies on validation of reference genes have been conducted in fruit trees and none in banana yet. In the present work, 20 candidate reference genes were selected, and their expression stability in 144 banana samples were evaluated and analyzed using two algorithms, geNorm and NormFinder. The samples consisted of eight sample sets collected under different experimental conditions, including various tissues, developmental stages, postharvest ripening, stresses (chilling, high temperature, and pathogen), and hormone treatments. Our results showed that different suitable reference gene(s) or combination of reference genes for normalization should be selected depending on the experimental conditions. The RPS2 and UBQ2 genes were validated as the most suitable reference genes across all tested samples. More importantly, our data further showed that the widely used reference genes, ACT and GAPDH, were not the most suitable reference genes in many banana sample sets. In addition, the expression of MaEBF1, a gene of interest that plays an important role in regulating fruit ripening, under different experimental conditions was used to further confirm the validated reference genes. Taken together, our results provide guidelines for reference gene(s) selection under different experimental conditions and a foundation for more accurate and widespread use of RT-qPCR in banana.


Journal of Experimental Botany | 2012

Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening

Wei Shan; Jian-fei Kuang; Lei Chen; Hui Xie; Huan-huan Peng; Yun-yi Xiao; Xueping Li; Weixin Chen; Quan-guang He; Jian-ye Chen; Wang-jin Lu

The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play important roles in plant growth, development, and stress responses. However, the precise role of NAC TFs in relation to fruit ripening is poorly understood. In this study, six NAC genes, designated MaNAC1–MaNAC6, were isolated and characterized from banana fruit. Subcellular localization showed that MaNAC1–MaNAC5 proteins localized preferentially to the nucleus, while MaNAC6 was distributed throughout the entire cell. A transactivation assay in yeast demonstrated that MaNAC4 and MaNAC6, as well as their C-terminal regions, possessed trans-activation activity. Gene expression profiles in fruit with four different ripening characteristics, including natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and a combination of 1-MCP with ethylene treatment, revealed that the MaNAC genes were differentially expressed in peel and pulp during post-harvest ripening. MaNAC1 and MaNAC2 were apparently upregulated by ethylene in peel and pulp, consistent with the increase in ethylene production. In contrast, MaNAC3 in peel and pulp and MaNAC5 in peel were constitutively expressed, and transcripts of MaNAC4 in peel and pulp and MaNAC6 in peel decreased, while MaNAC5 or MaNAC6 in pulp increased slightly during fruit ripening. Furthermore, the MaNAC2 promoter was activated after ethylene application, further enhancing the involvement of MaNAC2 in fruit ripening. More importantly, yeast two-hybrid and bimolecular fluorescence complementation analyses confirmed that MaNAC1/2 physically interacted with a downstream component of ethylene signalling, ethylene insensitive 3 (EIN3)-like protein, termed MaEIL5, which was downregulated during ripening. Taken together, these results suggest that MaNACs such as MaNAC1/MaNAC2, may be involved in banana fruit ripening via interaction with ethylene signalling components.


Plant Cell and Environment | 2014

Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1.

Wei Shan; Jian-fei Kuang; Wang-jin Lu; Jian-ye Chen

Our previous studies have indicated that the banana ripening-induced MaNAC1, a NAC (NAM, ATAF1/2 and CUC2) transcription factor (TF) gene, is regulated by ethylene during fruit ripening, and propylene, a functional ethylene analogue, induces cold tolerance of banana fruits. However, the involvement of MaNAC1 in propylene-induced cold tolerance of banana fruits is not understood. In the present work, the possible involvement of MaNAC1 in cold tolerance of banana fruits was investigated. MaNAC1 was noticeably induced by cold stress or following propylene treatment during cold storage. Transient protoplast assays showed that MaNAC1 promoter was activated by cold stress and ethylene treatment. Yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA) and transient expression assays demonstrated MaNAC1 as a novel direct target of MaICE1, and that the ability of MaICE1 binding to MaNAC1 promoter might be enhanced by MaICE1 phosphorylation and cold stress. Moreover, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses revealed physical interaction between MaNAC1 and MaCBF1, a downstream component of inducer of C-repeat binding factor (CBF) expression 1 (ICE1) in cold signalling. Taken together, these results suggest that the cold-responsive MaNAC1 may be involved in cold tolerance of banana fruits through its interaction with ICE1-CBF cold signalling pathway, providing new insights into the regulatory activity of NAC TF.


Journal of Experimental Botany | 2012

Histone deacetylase HD2 interacts with ERF1 and is involved in longan fruit senescence

Jian-fei Kuang; Jian-ye Chen; Ming Luo; Keqiang Wu; Wei Sun; Yueming Jiang; Wang-jin Lu

Histone deacetylation plays an important role in epigenetic control of gene expression. HD2 is a plant-specific histone deacetylase that is able to mediate transcriptional repression in many biological processes. To investigate the epigenetic and transcriptional mechanisms of longan fruit senescence, one histone deacetylase 2-like gene, DlHD2, and two ethylene-responsive factor-like genes, DlERF1 and DlERF2, were cloned and characterized from longan fruit. Expression of these genes was examined during fruit senescence under different storage conditions. The accumulation of DlHD2 reached a peak at 2 d and 30 d in the fruit stored at 25 °C (room temperature) and 4 °C (low temperature), respectively, or 6 h after the fruit was transferred from 4 °C to 25 °C, when fruit senescence was initiated. However, the DlERF1 transcript accumulated mostly at the later stage of fruit senescence, reaching a peak at 5 d and 35 d in the fruit stored at 25 °C and 4 °C, respectively, or 36 h after the fruit was transferred from low temperature to room temperature. Moreover, application of nitric oxide (NO) delayed fruit senescence, enhanced the expression of DlHD2, but suppressed the expression of DlERF1 and DlERF2. These results indicated a possible interaction between DlHD2 and DlERFs in regulating longan fruit senescence, and the direct interaction between DlHD2 and DlERF1 was confirmed by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Taken together, the results suggested that DlHD2 may act with DlERF1 to regulate gene expression involved in longan fruit senescence.


PLOS ONE | 2011

Molecular Characterization of a Strawberry FaASR Gene in Relation to Fruit Ripening

Jian-ye Chen; Du-juan Liu; Yueming Jiang; Minglei Zhao; Wei Shan; Jian-fei Kuang; Wang-jin Lu

Background ABA-, stress- and ripening-induced (ASR) proteins have been reported to act as a downstream component involved in ABA signal transduction. Although much attention has been paid to the roles of ASR in plant development and stress responses, the mechanisms by which ABA regulate fruit ripening at the molecular level are not fully understood. In the present work, a strawberry ASR gene was isolated and characterized (FaASR), and a polyclonal antibody against FaASR protein was prepared. Furthermore, the effects of ABA, applied to two different developmental stages of strawberry, on fruit ripening and the expression of FaASR at transcriptional and translational levels were investigated. Methodology/Principal Findings FaASR, localized in the cytoplasm and nucleus, contained 193 amino acids and shared common features with other plant ASRs. It also functioned as a transcriptional activator in yeast with trans-activation activity in the N-terminus. During strawberry fruit development, endogenous ABA content, levels of FaASR mRNA and protein increased significantly at the initiation of ripening at a white (W) fruit developmental stage. More importantly, application of exogenous ABA to large green (LG) fruit and W fruit markedly increased endogenous ABA content, accelerated fruit ripening, and greatly enhanced the expression of FaASR transcripts and the accumulation of FaASR protein simultaneously. Conclusions These results indicate that FaASR may be involved in strawberry fruit ripening. The observed increase in endogenous ABA content, and enhanced FaASR expression at transcriptional and translational levels in response to ABA treatment might partially contribute to the acceleration of strawberry fruit ripening.


Plant Physiology | 2016

Banana Transcription Factor MaERF11 Recruits Histone Deacetylase MaHDA1 and Represses the Expression of MaACO1 and Expansins during Fruit Ripening.

Yan-chao Han; Jian-fei Kuang; Jian-ye Chen; Xuncheng Liu; Yun-yi Xiao; Chang-chun Fu; Jun-ning Wang; Keqiang Wu; Wang-jin Lu

ETHYLENE RESPONSE FACTOR11 (MaERF11) and HDA1 interact to repress the expression of ACO1 and expansins via histone deacetylation. Phytohormone ethylene controls diverse developmental and physiological processes such as fruit ripening via modulation of ethylene signaling pathway. Our previous study identified that ETHYLENE RESPONSE FACTOR11 (MaERF11), a transcription factor in the ethylene signaling pathway, negatively regulates the ripening of banana, but the mechanism for the MaERF11-mediated transcriptional regulation remains largely unknown. Here we showed that MaERF11 has intrinsic transcriptional repression activity in planta. Electrophoretic mobility shift assay and chromatin immunoprecipitation analyses demonstrated that MaERF11 binds to promoters of three ripening-related Expansin genes, MaEXP2, MaEXP7 and MaEXP8, as well as an ethylene biosynthetic gene MaACO1, via the GCC-box motif. Furthermore, expression patterns of MaACO1, MaEXP2, MaEXP7, and MaEXP8 genes are correlated with the changes of histone H3 and H4 acetylation level during fruit ripening. Moreover, we found that MaERF11 physically interacts with a histone deacetylase, MaHDA1, which has histone deacetylase activity, and the interaction significantly strengthens the MaERF11-mediated transcriptional repression of MaACO1 and Expansins. Taken together, these findings suggest that MaERF11 may recruit MaHDA1 to its target genes and repress their expression via histone deacetylation.


Planta | 2013

Molecular characterization of cold-responsive basic helix-loop-helix transcription factors MabHLHs that interact with MaICE1 in banana fruit

Huan-huan Peng; Wei Shan; Jian-fei Kuang; Wang-jin Lu; Jian-ye Chen

Basic helix-loop-helix (bHLH) transcription factors (TFs) are ubiquitously involved in the response of higher plants to various abiotic stresses. However, little is known about bHLH TFs involved in the cold stress response in economically important fruits. Here, five novel full-length bHLH genes, designated as MabHLH1–MabHLH5, were isolated and characterized from banana fruit. Gene expression profiles revealed that MabHLH1/2/4 were induced by cold stress and methyl jasmonate (MeJA) treatment. Transient assays in tobacco BY2 protoplasts showed that MabHLH1/2/4 promoters were activated by cold stress and MeJA treatments. Moreover, protein–protein interaction analysis demonstrated that MabHLH1/2/4 not only physically interacted with each other to form hetero-dimers in the nucleus, but also interacted with an important upstream component of cold signaling MaICE1, with different interaction domains at their N-terminus. These results indicate that banana fruit cold-responsive MabHLHs may form a big protein complex in the nucleus with MaICE1. Taken together, our findings advance our understanding of the possible involvement of bHLH TFs in the regulatory network of ICE–CBF cold signaling pathway.


Molecular Plant Pathology | 2016

Banana fruit NAC transcription factor MaNAC5 cooperates with MaWRKYs to enhance the expression of pathogenesis‐related genes against Colletotrichum musae

Wei Shan; Jian-ye Chen; Jian-fei Kuang; Wang-jin Lu

Plants respond to pathogen attack by the modulation of a large set of genes, which are regulated by different types of transcription factor (TF). NAC (NAM/ATAF/CUC) and WRKY are plant-specific families of TFs, and have received much attention as transcriptional regulators in plant pathogen defence. However, the cooperation between NAC and WRKY TFs in the disease response remains largely unknown. Our previous study has revealed that two banana fruit WRKY TFs, MaWRKY1 and MaWRKY2, are involved in salicylic acid (SA)- and methyl jasmonate (MeJA)-induced resistance against Colletotrichum musae via binding to promoters of pathogenesis-related (PR) genes. Here, we found that MaNAC1, MaNAC2 and MaNAC5 were up-regulated after C. musae infection, and were also significantly enhanced by SA and MeJA treatment. Protein-protein interaction analysis showed that MaNAC5 physically interacted with MaWRKY1 and MaWRKY2. More importantly, dual-luciferase reporter (DLR) assay revealed that MaNAC5, MaWRKY1 and MaWRKY2 were transcriptional activators, and individually or cooperatively activated the transcriptional activities of MaPR1-1, MaPR2, MaPR10c and MaCHIL1 genes. Collectively, our results indicate that MaNAC5 cooperates with MaWRKY1 and MaWRKY2 to regulate the expression of a specific set of PR genes in the disease response, and to contribute at least partially to SA- and MeJA-induced pathogen resistance.


Journal of the Science of Food and Agriculture | 2011

Expression of genes associated with ethylene-signalling pathway in harvested banana fruit in response to temperature and 1-MCP treatment

Su-cheng Yan; Jian-ye Chen; Wei-min Yu; Jian-fei Kuang; Weixin Chen; Xueping Li; Wang-jin Lu

BACKGROUND Little attention has been paid to characterising the ethylene-signalling pathway genes in relation to abnormal ripening of harvested banana fruit during storage at high temperature. The aim of the present study was to investigate banana fruit abnormal ripening and the expression of ten genes associated with the ethylene-signalling pathway, namely MaACS1, MaACO1, MaERS1-4 and MaEIL1-4, at high temperature. Changes in these parameters of banana fruit at high temperature in response to 1-MCP pretreatment were also investigated. RESULTS High temperature accelerated the decline in fruit firmness, increased ethylene production and inhibited degreening in banana fruit, resulting in fruit abnormal ripening. In addition, the expression of MaACS1, MaACO1, MaERS2, MaERS3, MaERS4, MaEIL1, MaEIL3 and MaEIL4 was enhanced in banana fruit stored at high temperature. However, application of 1-MCP prior to high temperature storage delayed fruit abnormal ripening and simultaneously suppressed the expression of MaACS1, MaERS2, MaERS3, MaEIL1, MaEIL3 and MaEIL4. CONCLUSION The findings of this study suggested that the expression of genes associated with the ethylene-signalling pathway might be involved in banana fruit abnormal ripening at high temperature. Application of 1-MCP suppressed the expression of genes associated with the ethylene-signalling pathway, which may be attributed at least partially to 1-MCP delaying fruit abnormal ripening at high temperature.


International Journal of Molecular Sciences | 2012

Carbohydrate stress affecting fruitlet abscission and expression of genes related to auxin signal transduction pathway in litchi.

Jian-fei Kuang; Jian-Yang Wu; Hai-Ying Zhong; Cai-Qin Li; Jian-ye Chen; Wang-jin Lu; Jian-guo Li

Auxin, a vital plant hormone, regulates a variety of physiological and developmental processes. It is involved in fruit abscission through transcriptional regulation of many auxin-related genes, including early auxin responsive genes (i.e., auxin/indole-3-acetic acid (AUX/IAA), Gretchen Hagen3 (GH3) and small auxin upregulated (SAUR)) and auxin response factors (ARF), which have been well characterized in many plants. In this study, totally five auxin-related genes, including one AUX/IAA (LcAUX/IAA1), one GH3 (LcGH3.1), one SAUR (LcSAUR1) and two ARFs (LcARF1 and LcARF2), were isolated and characterized from litchi fruit. LcAUX/IAA1, LcGH3.1, LcSAUR1, LcARF1 and LcARF2 contain open reading frames (ORFs) encoding polypeptides of 203, 613, 142, 792 and 832 amino acids, respectively, with their corresponding molecular weights of 22.67, 69.20, 11.40, 88.20 and 93.16 kDa. Expression of these genes was investigated under the treatment of girdling plus defoliation which aggravated litchi fruitlet abscission due to the blockage of carbohydrates transport and the reduction of endogenous IAA content. Results showed that transcript levels of LcAUX/IAA1, LcGH3.1 and LcSAUR1 mRNAs were increased after the treatment in abscission zone (AZ) and other tissues, in contrast to the decreasing accumulation of LcARF1 mRNA, suggesting that LcAUX/IAA1, LcSAUR1 and LcARF1 may play more important roles in abscission. Our results provide new insight into the process of fruitlet abscission induced by carbohydrate stress and broaden our understanding of the auxin signal transduction pathway in this process at the molecular level.

Collaboration


Dive into the Jian-fei Kuang's collaboration.

Top Co-Authors

Avatar

Jian-ye Chen

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wang-jin Lu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wei Shan

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yun-yi Xiao

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhong-qi Fan

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yan-chao Han

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chang-chun Fu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiao-Li Tan

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hui Xie

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jun-ning Wang

South China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge