Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wang-jin Lu is active.

Publication


Featured researches published by Wang-jin Lu.


Planta | 2011

Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions.

Lei Chen; Hai-Ying Zhong; Jian-fei Kuang; Jian-guo Li; Wang-jin Lu; Jian-ye Chen

Reverse transcription quantitative real-time PCR (RT-qPCR) is a sensitive technique for quantifying gene expression, but its success depends on the stability of the reference gene(s) used for data normalization. Only a few studies on validation of reference genes have been conducted in fruit trees and none in banana yet. In the present work, 20 candidate reference genes were selected, and their expression stability in 144 banana samples were evaluated and analyzed using two algorithms, geNorm and NormFinder. The samples consisted of eight sample sets collected under different experimental conditions, including various tissues, developmental stages, postharvest ripening, stresses (chilling, high temperature, and pathogen), and hormone treatments. Our results showed that different suitable reference gene(s) or combination of reference genes for normalization should be selected depending on the experimental conditions. The RPS2 and UBQ2 genes were validated as the most suitable reference genes across all tested samples. More importantly, our data further showed that the widely used reference genes, ACT and GAPDH, were not the most suitable reference genes in many banana sample sets. In addition, the expression of MaEBF1, a gene of interest that plays an important role in regulating fruit ripening, under different experimental conditions was used to further confirm the validated reference genes. Taken together, our results provide guidelines for reference gene(s) selection under different experimental conditions and a foundation for more accurate and widespread use of RT-qPCR in banana.


PLOS ONE | 2012

Evaluation of New Reference Genes in Papaya for Accurate Transcript Normalization under Different Experimental Conditions

Xiaoyang Zhu; Xueping Li; Weixin Chen; Jian-ye Chen; Wang-jin Lu; Lei Chen; Danwen Fu

Real-time reverse transcription PCR (RT-qPCR) is a preferred method for rapid and accurate quantification of gene expression studies. Appropriate application of RT-qPCR requires accurate normalization though the use of reference genes. As no single reference gene is universally suitable for all experiments, thus reference gene(s) validation under different experimental conditions is crucial for RT-qPCR analysis. To date, only a few studies on reference genes have been done in other plants but none in papaya. In the present work, we selected 21 candidate reference genes, and evaluated their expression stability in 246 papaya fruit samples using three algorithms, geNorm, NormFinder and RefFinder. The samples consisted of 13 sets collected under different experimental conditions, including various tissues, different storage temperatures, different cultivars, developmental stages, postharvest ripening, modified atmosphere packaging, 1-methylcyclopropene (1-MCP) treatment, hot water treatment, biotic stress and hormone treatment. Our results demonstrated that expression stability varied greatly between reference genes and that different suitable reference gene(s) or combination of reference genes for normalization should be validated according to the experimental conditions. In general, the internal reference genes EIF (Eukaryotic initiation factor 4A), TBP1 (TATA binding protein 1) and TBP2 (TATA binding protein 2) genes had a good performance under most experimental conditions, whereas the most widely present used reference genes, ACTIN (Actin 2), 18S rRNA (18S ribosomal RNA) and GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) were not suitable in many experimental conditions. In addition, two commonly used programs, geNorm and Normfinder, were proved sufficient for the validation. This work provides the first systematic analysis for the selection of superior reference genes for accurate transcript normalization in papaya under different experimental conditions.


Physiologia Plantarum | 2008

Role of phenylalanine ammonia-lyase in heat pretreatment-induced chilling tolerance in banana fruit

Jian-ye Chen; Li-hong He; Yueming Jiang; Yong Wang; D. C. Joyce; Zuo-liang Ji; Wang-jin Lu

Increasing evidence suggests that phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) is associated with low temperature stress in plant tissues. Banana fruit are highly susceptible to chilling injury. However, little is known about the role of PAL (i.e. gene expression, protein level and activity) in fruit chilling. In this work, the involvement of PAL induced by heat treatment (38 degrees C for 3 days) prior to storage (8 degrees C) in chilling tolerance was investigated. The PAL inhibitor 2-aminoindan-2-phosphonic acid (AIP) was also used to further study the role of PAL in the chilling tolerance. The results showed that mRNA transcripts (MaPAL1 and MaPAL2) and PAL protein levels increased during storage at chilling temperature. Heat treatment prior to storage alleviated chilling injury and enhanced PAL activity, protein amount and MaPAL1 and MaPAL2 transcript levels. The increases in parameters of PAL upon heat pretreatment were all inhibited by AIP treatment, which resulted in aggravation of chilling injury. Thus, these findings indicate that the induction of PAL by heat pretreatment was regulated at both the transcriptional and the translational levels and that PAL may play a role in heat pretreatment-induced chilling tolerance of banana fruit.


Journal of Experimental Botany | 2012

Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening

Wei Shan; Jian-fei Kuang; Lei Chen; Hui Xie; Huan-huan Peng; Yun-yi Xiao; Xueping Li; Weixin Chen; Quan-guang He; Jian-ye Chen; Wang-jin Lu

The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play important roles in plant growth, development, and stress responses. However, the precise role of NAC TFs in relation to fruit ripening is poorly understood. In this study, six NAC genes, designated MaNAC1–MaNAC6, were isolated and characterized from banana fruit. Subcellular localization showed that MaNAC1–MaNAC5 proteins localized preferentially to the nucleus, while MaNAC6 was distributed throughout the entire cell. A transactivation assay in yeast demonstrated that MaNAC4 and MaNAC6, as well as their C-terminal regions, possessed trans-activation activity. Gene expression profiles in fruit with four different ripening characteristics, including natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and a combination of 1-MCP with ethylene treatment, revealed that the MaNAC genes were differentially expressed in peel and pulp during post-harvest ripening. MaNAC1 and MaNAC2 were apparently upregulated by ethylene in peel and pulp, consistent with the increase in ethylene production. In contrast, MaNAC3 in peel and pulp and MaNAC5 in peel were constitutively expressed, and transcripts of MaNAC4 in peel and pulp and MaNAC6 in peel decreased, while MaNAC5 or MaNAC6 in pulp increased slightly during fruit ripening. Furthermore, the MaNAC2 promoter was activated after ethylene application, further enhancing the involvement of MaNAC2 in fruit ripening. More importantly, yeast two-hybrid and bimolecular fluorescence complementation analyses confirmed that MaNAC1/2 physically interacted with a downstream component of ethylene signalling, ethylene insensitive 3 (EIN3)-like protein, termed MaEIL5, which was downregulated during ripening. Taken together, these results suggest that MaNACs such as MaNAC1/MaNAC2, may be involved in banana fruit ripening via interaction with ethylene signalling components.


Journal of Experimental Botany | 2013

Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes

Yun-yi Xiao; Jian-ye Chen; Jiang-fei Kuang; Wei Shan; Hui Xie; Yueming Jiang; Wang-jin Lu

The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1–MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein–protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes.


Plant Cell and Environment | 2014

Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1.

Wei Shan; Jian-fei Kuang; Wang-jin Lu; Jian-ye Chen

Our previous studies have indicated that the banana ripening-induced MaNAC1, a NAC (NAM, ATAF1/2 and CUC2) transcription factor (TF) gene, is regulated by ethylene during fruit ripening, and propylene, a functional ethylene analogue, induces cold tolerance of banana fruits. However, the involvement of MaNAC1 in propylene-induced cold tolerance of banana fruits is not understood. In the present work, the possible involvement of MaNAC1 in cold tolerance of banana fruits was investigated. MaNAC1 was noticeably induced by cold stress or following propylene treatment during cold storage. Transient protoplast assays showed that MaNAC1 promoter was activated by cold stress and ethylene treatment. Yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA) and transient expression assays demonstrated MaNAC1 as a novel direct target of MaICE1, and that the ability of MaICE1 binding to MaNAC1 promoter might be enhanced by MaICE1 phosphorylation and cold stress. Moreover, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses revealed physical interaction between MaNAC1 and MaCBF1, a downstream component of inducer of C-repeat binding factor (CBF) expression 1 (ICE1) in cold signalling. Taken together, these results suggest that the cold-responsive MaNAC1 may be involved in cold tolerance of banana fruits through its interaction with ICE1-CBF cold signalling pathway, providing new insights into the regulatory activity of NAC TF.


Journal of Agricultural and Food Chemistry | 2009

Effect of Nitric Oxide on Ethylene Synthesis and Softening of Banana Fruit Slice during Ripening

Guiping Cheng; En Yang; Wang-jin Lu; Yongxia Jia; Yueming Jiang; Xuewu Duan

The effects of nitric oxide (NO) on ethylene synthesis and softening of ripening-initiated banana slice were investigated. Fruit firmness, color, and contents of starch and acid-soluble pectin (ASP) were measured. In addition, ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) content, expression and activities of ACC synthase (ACS) and ACC oxidase (ACO), and activities of cell-wall-modifying enzymes, polygalacturonase (PG), pectin methylesterase (PME), and endo-beta-1,4-glucanase, were analyzed. Application of NO reduced ethylene production, inhibited degreening of the peel and delayed softening of the pulp. The decrease of ethylene production was associated with the reduction in the activity of ACO and the expression of the MA-ACO1 gene. Moreover, the NO-treated fruit showed a lower expression of the MA-ACS1 gene but higher ACS activity and ACC content. In addition, NO treatment decreased the activities of PG, PME, and endo-beta-1,4-glucanase and maintained higher contents of ASP and starch, which may account for the delay of softening. We proposed that the inhibition of ACO activity and transcription of gene MA-ACO1 by NO resulted in decreased ethylene synthesis and the delay of ripening of banana slice.


Journal of Experimental Botany | 2012

Histone deacetylase HD2 interacts with ERF1 and is involved in longan fruit senescence

Jian-fei Kuang; Jian-ye Chen; Ming Luo; Keqiang Wu; Wei Sun; Yueming Jiang; Wang-jin Lu

Histone deacetylation plays an important role in epigenetic control of gene expression. HD2 is a plant-specific histone deacetylase that is able to mediate transcriptional repression in many biological processes. To investigate the epigenetic and transcriptional mechanisms of longan fruit senescence, one histone deacetylase 2-like gene, DlHD2, and two ethylene-responsive factor-like genes, DlERF1 and DlERF2, were cloned and characterized from longan fruit. Expression of these genes was examined during fruit senescence under different storage conditions. The accumulation of DlHD2 reached a peak at 2 d and 30 d in the fruit stored at 25 °C (room temperature) and 4 °C (low temperature), respectively, or 6 h after the fruit was transferred from 4 °C to 25 °C, when fruit senescence was initiated. However, the DlERF1 transcript accumulated mostly at the later stage of fruit senescence, reaching a peak at 5 d and 35 d in the fruit stored at 25 °C and 4 °C, respectively, or 36 h after the fruit was transferred from low temperature to room temperature. Moreover, application of nitric oxide (NO) delayed fruit senescence, enhanced the expression of DlHD2, but suppressed the expression of DlERF1 and DlERF2. These results indicated a possible interaction between DlHD2 and DlERFs in regulating longan fruit senescence, and the direct interaction between DlHD2 and DlERF1 was confirmed by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Taken together, the results suggested that DlHD2 may act with DlERF1 to regulate gene expression involved in longan fruit senescence.


Letters in Applied Microbiology | 2004

Influence of cultivating conditions on the α-galactosidase biosynthesis from a novel strain of Penicillium sp. in solid-state fermentation

Chunlin Wang; D. F. Li; Wang-jin Lu; Yi Wang; Changhua Lai

Aims:  The work is intended to achieve optimum culture conditions of α‐galactosidase production by a mutant strain Penicillium sp. in solid‐state fermentation (SSF).


PLOS ONE | 2011

Molecular Characterization of a Strawberry FaASR Gene in Relation to Fruit Ripening

Jian-ye Chen; Du-juan Liu; Yueming Jiang; Minglei Zhao; Wei Shan; Jian-fei Kuang; Wang-jin Lu

Background ABA-, stress- and ripening-induced (ASR) proteins have been reported to act as a downstream component involved in ABA signal transduction. Although much attention has been paid to the roles of ASR in plant development and stress responses, the mechanisms by which ABA regulate fruit ripening at the molecular level are not fully understood. In the present work, a strawberry ASR gene was isolated and characterized (FaASR), and a polyclonal antibody against FaASR protein was prepared. Furthermore, the effects of ABA, applied to two different developmental stages of strawberry, on fruit ripening and the expression of FaASR at transcriptional and translational levels were investigated. Methodology/Principal Findings FaASR, localized in the cytoplasm and nucleus, contained 193 amino acids and shared common features with other plant ASRs. It also functioned as a transcriptional activator in yeast with trans-activation activity in the N-terminus. During strawberry fruit development, endogenous ABA content, levels of FaASR mRNA and protein increased significantly at the initiation of ripening at a white (W) fruit developmental stage. More importantly, application of exogenous ABA to large green (LG) fruit and W fruit markedly increased endogenous ABA content, accelerated fruit ripening, and greatly enhanced the expression of FaASR transcripts and the accumulation of FaASR protein simultaneously. Conclusions These results indicate that FaASR may be involved in strawberry fruit ripening. The observed increase in endogenous ABA content, and enhanced FaASR expression at transcriptional and translational levels in response to ABA treatment might partially contribute to the acceleration of strawberry fruit ripening.

Collaboration


Dive into the Wang-jin Lu's collaboration.

Top Co-Authors

Avatar

Jian-ye Chen

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jian-fei Kuang

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wei Shan

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yueming Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yun-yi Xiao

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhong-qi Fan

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Weixin Chen

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yan-chao Han

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hui Xie

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chang-chun Fu

South China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge