Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jian Ma is active.

Publication


Featured researches published by Jian Ma.


PLOS ONE | 2013

Sequence-Based Analysis of Translocations and Inversions in Bread Wheat (Triticum aestivum L.)

Jian Ma; Jiri Stiller; Paul J. Berkman; Yu-Ming Wei; Jan Rogers; Catherine Feuillet; Jaroslav Dolezel; Klaus F. X. Mayer; Kellye Eversole; You-Liang Zheng; Chunji Liu

Structural changes of chromosomes are a primary mechanism of genome rearrangement over the course of evolution and detailed knowledge of such changes in a given species and its close relatives should increase the efficiency and precision of chromosome engineering in crop improvement. We have identified sequences bordering each of the main translocation and inversion breakpoints on chromosomes 4A, 5A and 7B of the modern bread wheat genome. The locations of these breakpoints allow, for the first time, a detailed description of the evolutionary origins of these chromosomes at the gene level. Results from this study also demonstrate that, although the strategy of exploiting sorted chromosome arms has dramatically simplified the efforts of wheat genome sequencing, simultaneous analysis of sequences from homoeologous and non-homoeologous chromosomes is essential in understanding the origins of DNA sequences in polyploid species.


PLOS ONE | 2014

Transcriptome and Allele Specificity Associated with a 3BL Locus for Fusarium Crown Rot Resistance in Bread Wheat

Jian Ma; Jiri Stiller; Qiang Zhao; Qi Feng; Colin Cavanagh; Penghao Wang; Donald M. Gardiner; Frédéric Choulet; Catherine Feuillet; You-Liang Zheng; Yu-Ming Wei; Guijun Yan; Bin Han; John M. Manners; Chunji Liu

Fusarium pathogens cause two major diseases in cereals, Fusarium crown rot (FCR) and head blight (FHB). A large-effect locus conferring resistance to FCR disease was previously located to chromosome arm 3BL (designated as Qcrs-3B) and several independent sets of near isogenic lines (NILs) have been developed for this locus. In this study, five sets of the NILs were used to examine transcriptional changes associated with the Qcrs-3B locus and to identify genes linked to the resistance locus as a step towards the isolation of the causative gene(s). Of the differentially expressed genes (DEGs) detected between the NILs, 12.7% was located on the single chromosome 3B. Of the expressed genes containing SNP (SNP-EGs) detected, 23.5% was mapped to this chromosome. Several of the DEGs and SNP-EGs are known to be involved in host-pathogen interactions, and a large number of the DEGs were among those detected for FHB in previous studies. Of the DEGs detected, 22 were mapped in the Qcrs-3B interval and they included eight which were detected in the resistant isolines only. The enrichment of DEG, and not necessarily those containing SNPs between the resistant and susceptible isolines, around the Qcrs-3B locus is suggestive of local regulation of this region by the resistance allele. Functions for 13 of these DEGs are known. Of the SNP-EGs, 28 were mapped in the Qcrs-3B interval and biological functions for 16 of them are known. These results provide insights into responses regulated by the 3BL locus and identify a tractable number of target genes for fine mapping and functional testing to identify the causative gene(s) at this QTL.


Genome Biology and Evolution | 2014

Extensive Pericentric Rearrangements in the Bread Wheat (Triticum aestivum L.) Genotype “Chinese Spring” Revealed from Chromosome Shotgun Sequence Data

Jian Ma; Jiri Stiller; Yu-Ming Wei; You-Liang Zheng; Katrien M. Devos; Jaroslav Doležel; Chunji Liu

The bread wheat (Triticum aestivum L.) genotype “Chinese Spring” (“CS”) is the reference base in wheat genetics and genomics. Pericentric rearrangements in this genotype were systematically assessed by analyzing homoeoloci for a set of nonredundant genes from Brachypodium distachyon, Triticum urartu, and Aegilops tauschii in the CS chromosome shotgun sequence obtained from individual chromosome arms flow-sorted from CS aneuploid lines. Based on patterns of their homoeologous arm locations, 551 genes indicated the presence of pericentric inversions in at least 10 of the 21 chromosomes. Available data from deletion bin-mapped expressed sequence tags and genetic mapping in wheat indicated that all inversions had breakpoints in the low-recombinant gene-poor pericentromeric regions. The large number of putative intrachromosomal rearrangements suggests the presence of extensive structural differences among the three subgenomes, at least some of which likely occurred during the production of the aneuploid lines of this hexaploid wheat genotype. These differences could have significant implications in wheat genome research where comparative approaches are used such as in ordering and orientating sequence contigs and in gene cloning.


BMC Evolutionary Biology | 2015

Putative interchromosomal rearrangements in the hexaploid wheat (Triticum aestivum L.) genotype ‘Chinese Spring’ revealed by gene locations on homoeologous chromosomes

Jian Ma; Jiri Stiller; Zhi Zheng; Yu-Ming Wei; You-Liang Zheng; Guijun Yan; Jaroslav Doležel; Chunji Liu

BackgroundChromosomal rearrangements are a major driving force in shaping genome during evolution. Previous studies show that translocated genes could undergo elevated rates of evolution and recombination frequencies around these genes can be altered. Based on the recently released genome sequences of Triticum urartu, Aegilops tauschii, Brachypodium distachyon and bread wheat, an analysis of interchromosomal translocations in the hexaploid wheat genotype ‘Chinese Spring’ (‘CS’) was conducted based on chromosome shotgun sequences from individual chromosome arms of this genotype.ResultsA total of 720 genes representing putative interchromosomal rearrangements was identified. They were distributed across the 42 chromosome arms. About 59% of these translocated genes were those involved in the well-characterized translocations involving chromosomes 4A, 5A and 7B. The other 41% of the genes represent a large numbers of putative interchromosomal rearrangements which have not yet been described. The number of the putative translocation events in the D subgenome was about half of those presented in either the A or B subgenomes, which agreed well with that the times of interaction between the A and B subgenomes almost doubled that between either of them and the D subgenome.ConclusionsThe possible existence of a large number of interchromosomal rearrangements detected in this study provide further evidence that caution should be taken when using synteny in ordering sequence contigs or in cloning genes in hexaploid wheat. The identification of these putative translocations in ‘CS’ also provide a base for a systematic evaluation of their presence or absence in the full spectrum of bread wheat and its close relatives, which could have significant implications in a wide array of fields ranging from studies of systematics and evolution to practical breeding.


Frontiers in Plant Science | 2015

A genome-wide analysis of the auxin/indole-3-acetic acid gene family in hexaploid bread wheat (Triticum aestivum L.)

Linyi Qiao; Xiaojun Zhang; Xiao Han; Lei Zhang; Xin Li; Haixian Zhan; Jian Ma; Peigao Luo; Wenping Zhang; Lei Cui; Xiaoyan Li; Zhijian Chang

The Auxin/indole-3-acetic acid (Aux/IAA) gene family plays key roles in the primary auxin-response process and controls a number of important traits in plants. However, the characteristics of the Aux/IAA gene family in hexaploid bread wheat (Triticum aestivum L.) have long been unknown. In this study, a comprehensive identification of the Aux/IAA gene family was performed using the latest draft genome sequence of the bread wheat “Chinese Spring.” Thirty-four Aux/IAA genes were identified, 30 of which have duplicated genes on the A, B or D sub-genome, with a total of 84 Aux/IAA sequences. These predicted Aux/IAA genes were non-randomly distributed in all the wheat chromosomes except for chromosome 2D. The information of wheat Aux/IAA proteins is also described. Based on an analysis of phylogeny, expression and adaptive evolution, we prove that the Aux/IAA family in wheat has been replicated twice in the two allopolyploidization events of bread wheat, when the tandem duplication also occurred. The duplicated genes have undergone an evolutionary process of purifying selection, resulting in the high conservation of copy genes among sub-genomes and functional redundancy among several members of the TaIAA family. However, functional divergence probably existed in most TaIAA members due to the diversity of the functional domain and expression pattern. Our research provides useful information for further research into the function of Aux/IAA genes in wheat.


BMC Plant Biology | 2012

Novel variants of HMW glutenin subunits from Aegilops section Sitopsis species in relation to evolution and wheat breeding

Qian-Tao Jiang; Jian Ma; Yu-Ming Wei; Yaxi Liu; Xiu-Jin Lan; Shou-Fen Dai; Zhen-Xiang Lu; Shan Zhao; Quan-Zhi Zhao; You-Liang Zheng

BackgroundHigh molecular weight glutenin subunits (HMW-GSs), encoded by the genes at Glu-1 loci in wheat and its related species, are significant in the determination of grain processing quality. However, the diversity and variations of HMW-GSs are relatively low in bread wheat. More interests are now focused on wheat wild relatives in Triticeae. The genus Aegilops represents an important germplasm for novel HWM-GSs and other useful genes for wheat genetic improvement.ResultsSix novel Glu-1 alleles and HMW-GSs were identified and characterized from three species of Aegilops section Sitopsis (S genome). Both open reading frames (ORFs) and promoter regions of these Glu-1 alleles were sequenced and characterized. The ORFs of Sitopsis Glu-1 genes are approximately 2.9u2009kb and 2.3u2009kb for x-type and y-type subunits, respectively. Although the primary structures of Sitopsis HMW-GSs are similar to those of previously reported ones, all six x-type or y-type subunits have the large fragment insertions. Our comparative analyses of the deduced amino acid sequences verified that Aegilops section Sitopsis species encode novel HMW-GSs with their molecular weights larger than almost all other known HMW-GSs. The Glu-1 promoter sequences share the high homology among S genome. Our phylogenetic analyses by both network and NJ tree indicated that there is a close phylogenetic evolutionary relationship of x-type and y-type subunit between S and D genome.ConclusionsThe large molecular weight of HMW-GSs from S genome is a unique feature identified in this study. Such large subunits are resulted from the duplications of repetitive domains in Sitopsis HMW-GSs. The unequal crossover events are the most likely mechanism of variations in glutenin subunits. The S genome-encoded subunits, 1Dx2.2 and 1Dx2.2* have independent origins, although they share similar evolutionary mechanism. As HMW-GSs play a key role in wheat baking quality, these large Sitopsis glutenin subunits can be used as special genetic resources for wheat quality improvement.


Planta | 2013

Structure and expression of barley starch phosphorylase genes

Jian Ma; Qian-Tao Jiang; Xiao-Wei Zhang; Xiu-Jin Lan; Zhi-En Pu; Yu-Ming Wei; Chunji Liu; Zhen-Xiang Lu; You-Liang Zheng

The function of starch phosphorylase has long been debated on the regulation of starch metabolism during the growth and development of plants. In this study, we isolated starch phosphorylase genes (Pho1 and Pho2) from barley, characterized their gene and protein structures, predicated their promoter’s cis-elements and analyzed expression patterns. Multiple alignments of these genes showed that (1) both Pho1 and Pho2 genes possess 15 exons and 14 introns in all but three of the species analyzed, Aegilops tauschii (for Pho1 which contains 16 exons and 15 introns), potato (for Pho1b which contains 14 exons and 13 introns), and Triticum uraru (for Pho2 which contains 15 exons and 14 introns); (2) the exon–intron junctions of Pho1 and Pho2 flanking the ligand-binding sites are more conservative than the other regions. Analysis of protein sequences revealed that Pho1 and Pho2 were highly homologous except for two regions, the N terminal domain and the L78 insertion region. The results of real-time quantitative PCR (RT-qPCR) indicated that Pho2 is mainly expressed in germinating seeds, and the expression of Pho1 is similar to that of starch synthesis genes during seed development in barley. Microarray-based analysis indicated that the accumulation of Pho1 or Pho2 transcripts exhibited uniform pattern both in various tissues and various stages of seed development among species of barley, rice, and Arabidopsis. Pho1 of barley was significantly down-regulated under cold and drought treatments, and up-regulated under stem rust infection. Pho2 exhibited similar expression to Pho1 in barley. However, significant difference in expression was not detected for either Pho1 or Pho2 under any of the investigated abiotic stresses. In Arabidopsis, significant down-regulation was detected for Pho1 (PHS1) under abscisic acid (ABA) and for Pho2 (PHS2) under cold, salt, and ABA. Our results provide valuable information to genetically manipulate phosphorylase genes and to further elucidate their regulatory mechanism in the starch biosynthetic pathway.


Gene | 2014

Characterization and expression analysis of WOX5 genes from wheat and its relatives.

Shan Zhao; Qian-Tao Jiang; Jian Ma; Xiao-Wei Zhang; Quan-Zhi Zhao; Xiu-Ying Wang; Chang-Shui Wang; Xue Cao; Zhen-Xiang Lu; You-Liang Zheng; Yu-Ming Wei

The WUSCHEL (WUS)-related homeobox (WOX) gene family plays an important role in coordinating gene transcription in the early phases of embryogenesis. In this study, we isolated and characterized WOX5 from common wheat and its relatives Triticum monococcum, Triticum urartu, Aegilops speltoides, Aegilops searsii, Aegilops sharonensis, Aegilops longissima, Aegilops bicornis, Aegilops tauschii, and Triticum turgidum. The size of the characterized WOX5 alleles ranged from 1029 to 1038 bp and encompassed the complete open reading frame (ORF) as well as 5 upstream and 3 downstream sequences. Domain prediction analysis showed that the putative primary structures of wheat WOX5 protein include the highly conserved homeodomain besides the WUS-box domain and the EAR-like domain, which is/are present in some members of the WOX protein family. The full-length ORF was subcloned into a prokaryotic expression vector pET30a, and an approximate 26-kDa protein was successfully expressed in Escherichia coli BL21 (DE3) cells with IPTG induction. The WOX5 genes from wheat-related species exhibit a similar structure to and high sequence similarity with WOX5 genes from common wheat. The degree of divergence and phylogenetic tree analysis among WOX5 alleles suggested the existence of three homoeologous copies in the A, B, or D genome of common wheat. Quantitative PCR results showed that TaWOX5 was primarily expressed in the root and calli induced by auxin and cytokinin, indicating that TaWOX5 may play a role related to root formation or development and is associated with hormone regulation in somatic embryogenesis.


Genetica | 2011

Characterization of barley Prp1 gene and its expression during seed development and under abiotic stress.

Qian-Tao Jiang; Tao Liu; Jian Ma; Yu-Ming Wei; Zhen-Xiang Lu; Xiu-Jin Lan; Shou-Fen Dai; You-Liang Zheng

The pre-mRNA processing (Prp1) gene encodes a spliceosomal protein. It was firstly identified in fission yeast and plays a regular role during spliceosome activation and cell cycle. Plant Prp1 genes have only been identified from rice, Sorghum and Arabidopsisthaliana. In this study, we reported the identification and isolation of a novel Prp1 gene from barley, and further explored its expressional pattern by using real-time quantitative RT-PCR, promoter prediction and analysis of microarray data. The putative barley Prp1 protein has a similar primary structure features to those of other known Prp1 protein in this family. The results of amino acid comparison indicated that Prp1 protein of barley and other plant species has a highly conserved 3′ termnal region while their 5′ sequences greatly varied. The results of expressional analysis revealed that the expression level of barley Prp1 gene is always stable in different vegetative tissues, except it is up-regulated at the mid- and late stages of seed development or under the condition of cold stress. This kind of expressional pattern for barley Prp1 is also supported by our results of comparison of microarray data from barley, rice and Arabidopsis. For the molecular mechanism of its expressional pattern, we conclude that the expression of Prp1 gene may be up-regulated by the increase of pre-mRNAs and not be constitutive or ubiquitous.


BMC Genomics | 2015

Fine mapping of a large-effect QTL conferring Fusarium crown rot resistance on the long arm of chromosome 3B in hexaploid wheat

Zhi Zheng; Jian Ma; Jiri Stiller; Qiang Zhao; Qi Feng; Frédéric Choulet; Catherine Feuillet; You-Liang Zheng; Yu-Ming Wei; Bin Han; Guijun Yan; John M. Manners; Chunji Liu

BackgroundFusarium crown rot (FCR) is a major cereal disease in semi-arid areas worldwide. Of the various QTL reported, the one on chromosome arm 3BL (Qcrs.cpi-3B) has the largest effect that can be consistently detected in different genetic backgrounds. Nine sets of near isogenic lines (NILs) for this locus were made available in a previous study. To identify markers that could be reliably used in tagging the Qcrs.cpi-3B locus, a NIL-derived population consisting of 774xa0F10 lines were generated and exploited to assess markers selected from the existing linkage map and generated from sequences of the 3B pseudomolecule.ResultsThis is the first report on fine mapping a QTL conferring FCR resistance in wheat. By three rounds of linkage mapping using the NILs and the NIL-derived population, the Qcrs.cpi-3B locus was mapped to an interval of 0.7xa0cM covering a physical distance of about 1.5xa0Mb. Seven markers co-segregating with the locus were developed. This interval contains a total of 63 gene-coding sequences based on the 3B pseudomolecule, and six of them were known to encode disease resistance proteins. Several of the genes in this interval were among those responsive to FCR infection detected in an earlier study.ConclusionsThe accurate localization of the Qcrs.cpi-3B locus and the development of the markers co-segregating with it should facilitate the incorporation of this large-effect QTL conferring FCR resistance into breeding programs as well as the cloning of the gene(s) underlying the QTL.

Collaboration


Dive into the Jian Ma's collaboration.

Top Co-Authors

Avatar

Yu-Ming Wei

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

You-Liang Zheng

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qian-Tao Jiang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiu-Jin Lan

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yaxi Liu

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guo-Yue Chen

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Peng-Fei Qi

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ji-Rui Wang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chunji Liu

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Mei Deng

Sichuan Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge