Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ji-Rui Wang is active.

Publication


Featured researches published by Ji-Rui Wang.


Proceedings of the National Academy of Sciences of the United States of America | 2013

A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor

Ming-Cheng Luo; Yong Q. Gu; Frank M. You; Karin R. Deal; Yaqin Ma; Yuqin Hu; Naxin Huo; Yi Wang; Ji-Rui Wang; Shiyong Chen; Chad M. Jorgensen; Yong Zhang; Patrick E. McGuire; Shiran Pasternak; Joshua C. Stein; Doreen Ware; Melissa Kramer; W. Richard McCombie; Shahryar F. Kianian; Mihaela Martis; Klaus F. X. Mayer; Sunish K. Sehgal; Wanlong Li; Bikram S. Gill; Michael W. Bevan; Hana Šimková; Jaroslav Doležel; Song Weining; Gerard R. Lazo; Olin D. Anderson

The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,706 bacterial artificial chromosome clones, assembled contigs, designed a 10K Ae. tauschii Infinium SNP array, constructed a 7,185-marker genetic map, and anchored on the map contigs totaling 4.03 Gb. Using whole genome shotgun reads, we extended the SNP marker sequences and found 17,093 genes and gene fragments. We showed that collinearity of the Ae. tauschii genes with Brachypodium distachyon, rice, and sorghum decreased with phylogenetic distance and that structural genome evolution rates have been high across all investigated lineages in subfamily Pooideae, including that of Brachypodieae. We obtained additional information about the evolution of the seven Triticeae chromosomes from 12 ancestral chromosomes and uncovered a pattern of centromere inactivation accompanying nested chromosome insertions in grasses. We showed that the density of noncollinear genes along the Ae. tauschii chromosomes positively correlates with recombination rates, suggested a cause, and showed that new genes, exemplified by disease resistance genes, are preferentially located in high-recombination chromosome regions.


Plant Molecular Biology | 2010

Genome-wide identification and evaluation of novel internal control genes for Q-PCR based transcript normalization in wheat

Xiang-Yu Long; Ji-Rui Wang; Thérèse Ouellet; Hélène Rocheleau; Yu-Ming Wei; Zhi-En Pu; Qian-Tao Jiang; Xiujing Lan; You-Liang Zheng

To accurately quantify gene expression using quantitative PCR amplification, it is vital that one or more ideal internal control genes are used to normalize the samples to be compared. Ideally, the expression level of those internal control genes should vary as little as possible between tissues, developmental stages and environmental conditions. In this study, 32 candidate genes for internal control were obtained from the analysis of nine independent experiments which included 333 Affymetrix GeneChip Wheat Genome arrays. Expression levels of the selected genes were then evaluated by quantitative real-time PCR with cDNA samples from different tissues, stages of development and environmental conditions. Finally, fifteen novel internal control genes were selected and their respective expression profiles were compared using NormFinder, geNorm, Pearson correlation coefficients and the twofold-change method. The novel internal control genes from this study were compared with thirteen traditional ones for their expression stability. It was observed that seven of the novel internal control genes were better than the traditional ones in expression stability under all the tested cDNA samples. Among the traditional internal control genes, the elongation factor 1-alpha exhibited strong expression stability, whereas the 18S rRNA, Alpha-tubulin, Actin and GAPDH genes had very poor expression stability in the range of wheat samples tested. Therefore, the use of the novel internal control genes for normalization should improve the accuracy and validity of gene expression analysis.


International Journal of Molecular Sciences | 2013

Genetic Diversity Revealed by Single Nucleotide Polymorphism Markers in a Worldwide Germplasm Collection of Durum Wheat

Jing Ren; Daokun Sun; Liang Chen; Frank M. You; Ji-Rui Wang; Yunliang Peng; Eviatar Nevo; Dongfa Sun; Ming-Cheng Luo; Junhua Peng

Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.


Scientific Reports | 2015

Emerging methanol-tolerant AlN nanowire oxygen reduction electrocatalyst for alkaline direct methanol fuel cell

Ming Lei; Ji-Rui Wang; Li; Yijin Wang; Haolin Tang; Wei Wang

Replacing precious and nondurable Pt catalysts with cheap materials is a key issue for commercialization of fuel cells. In the case of oxygen reduction reaction (ORR) catalysts for direct methanol fuel cell (DMFC), the methanol tolerance is also an important concern. Here, we develop AlN nanowires with diameters of about 100–150 nm and the length up to 1 mm through crystal growth method. We find it is electrochemically stable in methanol-contained alkaline electrolyte. This novel material exhibits pronounced electrocatalytic activity with exchange current density of about 6.52 × 10−8 A/cm2. The single cell assembled with AlN nanowire cathodic electrode achieves a power density of 18.9 mW cm−2. After being maintained at 100 mA cm−2 for 48 h, the AlN nanowire-based single cell keeps 92.1% of the initial performance, which is in comparison with 54.5% for that assembled with Pt/C cathode. This discovery reveals a new type of metal nitride ORR catalyst that can be cheaply produced from crystal growth method.


Genetica | 2006

Characterization of two HMW glutenin subunit genes from Taenitherum Nevski

Ze-Hong Yan; Yu-Ming Wei; Ji-Rui Wang; Dengcai Liu; Shou-Fen Dai; You-Liang Zheng

The compositions of high molecular weight (HMW) glutenin subunits from three species of Taenitherum Nevski (TaTa, 2n = 2x = 14), Ta. caput-medusae, Ta. crinitum and Ta. asperum, were investigated by SDS-PAGE analysis. The electrophoresis mobility of the x-type HMW glutenin subunits were slower or equal to that of wheat HMW glutenin subunit Dx2, and the electrophoresis mobility of the y-type subunits were faster than that of wheat HMW glutenin subunit Dy12. Two HMW glutenin genes, designated as Tax and Tay, were isolated from Ta. crinitum, and their complete nucleotide coding sequences were determined. Sequencing and multiple sequences alignment suggested that the HMW glutenin subunits derived from Ta. crinitum had the similar structures to the HMW glutenin subunits from wheat and related species with a signal peptide, and N- and C-conservative domains flanking by a repetitive domain consisted of the repeated short peptide motifs. However, the encoding sequences of Tax and Tay had some novel modification compared with the HMW glutenin genes reported so far: (1) A short peptide with the consensus sequences of KGGSFYP, which was observed in the N-terminal of all known HMW glutenin genes, was absent in Tax; (2) There is a specified short peptide tandem of tripeptide, hexapeptide and nonapeptide and three tandem of tripeptide in the repetitive domain of Tax; (3) The amino acid residues number is 105 (an extra Q presented) but not 104 in the N-terminal of Tay, which was similar to most of y-type HMW glutenin genes from Elytrigia elongata and Crithopsis delileana. Phylogenetic analysis indicated that Tax subunit was mostly related to Ax1, Cx, Ux and Dx5, and Tay was more related to Ay, Cy and Ry.


BMC Evolutionary Biology | 2013

SNP-revealed genetic diversity in wild emmer wheat correlates with ecological factors

Jing Ren; Liang Chen; Daokun Sun; Frank M. You; Ji-Rui Wang; Yunliang Peng; Eviatar Nevo; Avigdor Beiles; Dongfa Sun; Ming-Cheng Luo; Junhua Peng

BackgroundPatterns of genetic diversity between and within natural plant populations and their driving forces are of great interest in evolutionary biology. However, few studies have been performed on the genetic structure and population divergence in wild emmer wheat using a large number of EST-related single nucleotide polymorphism (SNP) markers.ResultsIn the present study, twenty-five natural wild emmer wheat populations representing a wide range of ecological conditions in Israel and Turkey were used. Genetic diversity and genetic structure were investigated using over 1,000 SNP markers. A moderate level of genetic diversity was detected due to the biallelic property of SNP markers. Clustering based on Bayesian model showed that grouping pattern is related to the geographical distribution of the wild emmer wheat. However, genetic differentiation between populations was not necessarily dependent on the geographical distances. A total of 33 outlier loci under positive selection were identified using a FST-outlier method. Significant correlations between loci and ecogeographical factors were observed.ConclusionsNatural selection appears to play a major role in generating adaptive structures in wild emmer wheat. SNP markers are appropriate for detecting selectively-channeled adaptive genetic diversity in natural populations of wild emmer wheat. This adaptive genetic diversity is significantly associated with ecological factors.


BMC Genomics | 2012

Genome-wide SNP discovery in walnut with an AGSNP pipeline updated for SNP discovery in allogamous organisms

Frank M. You; Karin R. Deal; Ji-Rui Wang; Monica Britton; Joseph Fass; Dawei Lin; Abhaya M. Dandekar; Charles A. Leslie; Mallikarjuna Aradhya; Ming-Cheng Luo; Jan Dvorak

BackgroundA genome-wide set of single nucleotide polymorphisms (SNPs) is a valuable resource in genetic research and breeding and is usually developed by re-sequencing a genome. If a genome sequence is not available, an alternative strategy must be used. We previously reported the development of a pipeline (AGSNP) for genome-wide SNP discovery in coding sequences and other single-copy DNA without a complete genome sequence in self-pollinating (autogamous) plants. Here we updated this pipeline for SNP discovery in outcrossing (allogamous) species and demonstrated its efficacy in SNP discovery in walnut (Juglans regia L.).ResultsThe first step in the original implementation of the AGSNP pipeline was the construction of a reference sequence and the identification of single-copy sequences in it. To identify single-copy sequences, multiple genome equivalents of short SOLiD reads of another individual were mapped to shallow genome coverage of long Sanger or Roche 454 reads making up the reference sequence. The relative depth of SOLiD reads was used to filter out repeated sequences from single-copy sequences in the reference sequence. The second step was a search for SNPs between SOLiD reads and the reference sequence. Polymorphism within the mapped SOLiD reads would have precluded SNP discovery; hence both individuals had to be homozygous. The AGSNP pipeline was updated here for using SOLiD or other type of short reads of a heterozygous individual for these two principal steps. A total of 32.6X walnut genome equivalents of SOLiD reads of vegetatively propagated walnut scion cultivar ‘Chandler’ were mapped to 48,661 ‘Chandler’ bacterial artificial chromosome (BAC) end sequences (BESs) produced by Sanger sequencing during the construction of a walnut physical map. A total of 22,799 putative SNPs were initially identified. A total of 6,000 Infinium II type SNPs evenly distributed along the walnut physical map were selected for the construction of an Infinium BeadChip, which was used to genotype a walnut mapping population having ‘Chandler’ as one of the parents. Genotyping results were used to adjust the filtering parameters of the updated AGSNP pipeline. With the adjusted filtering criteria, 69.6% of SNPs discovered with the updated pipeline were real and could be mapped on the walnut genetic map. A total of 13,439 SNPs were discovered by BES re-sequencing. BESs harboring SNPs were in 677 FPC contigs covering 98% of the physical map of the walnut genome.ConclusionThe updated AGSNP pipeline is a versatile SNP discovery tool for a high-throughput, genome-wide SNP discovery in both autogamous and allogamous species. With this pipeline, a large set of SNPs were identified in a single walnut cultivar.


Scientific Reports | 2015

Genome-wide association study of 29 morphological traits in Aegilops tauschii.

Yaxi Liu; Lang Wang; Shuangshuang Mao; Kun Liu; Yanli Lu; Ji-Rui Wang; Yu-Ming Wei; You-Liang Zheng

Aegilops tauschii is the D-genome progenitor of hexaploid wheat (Triticum aestivum). It is considered to be an important source of genetic variation for wheat breeding, and its genome is an invaluable reference for wheat genomics. We conducted a genome-wide association study using 7,185 single nucleotide polymorphism (SNP) markers across 322 diverse accessions of Ae. tauschii that were systematically phenotyped for 29 morphological traits in order to identify marker-trait associations and candidate genes, assess genetic diversity, and classify the accessions based on phenotypic data and genotypic comparison. Using the general linear model and mixed linear model, we identified a total of 18 SNPs significantly associated with 10 morphological traits. Systematic search of the flanking sequences of trait-associated SNPs in public databases identified several genes that may be linked to variations in phenotypes. Cluster analysis using phenotypic data grouped accessions into four clusters, while accessions in the same cluster were not from the same Ae. tauschii subspecies or from the same area of origin. This work establishes a fundamental research platform for association studies in Ae. tauschii and also provides useful information for understanding the genetic mechanism of agronomic traits in wheat.


Journal of Integrative Agriculture | 2014

Quantitative Trait Loci Associated with Micronutrient Concentrations in Two Recombinant Inbred Wheat Lines

Zhi-en Pu; Ma Yu; Qiu-yi He; Guo-Yue Chen; Ji-Rui Wang; Yaxi Liu; Qian-Tao Jiang; Long Wei; Shou-Fen Dai; Yu-Ming Wei; You-Liang Zheng

Micronutrient malnutrition affects over three billion people worldwide, especially women and children in developing countries. Increasing the bioavailable concentrations of essential elements in the edible portions of crops is an effective resolution to address this issue. To determine the genetic factors controlling micronutrient concentration in wheat, the quantitative trait locus (QTL) analysis for iron, zinc, copper, manganese, and selenium concentrations in two recombinant inbred line populations was performed. In all, 39 QTLs for five micronutrient concentrations were identified in this study. Of these, 22 alleles from synthetic wheat SHW-L1 and seven alleles from the progeny line of the synthetic wheat Chuanmai 42 showed an increase in micronutrient concentrations. Five QTLs on chromosomes 2A, 3D, 4D, and 5B found in both the populations showed significant phenotypic variation for 2–3 micronutrient concentrations. Our results might help understand the genetic control of micronutrient concentration and allow the utilization of genetic resources of synthetic hexaploid wheat for improving micronutrient efficiency of cultivated wheat by using molecular marker-assisted selection.


Journal of Integrative Agriculture | 2014

QTL Mapping for Important Agronomic Traits in Synthetic Hexaploid Wheat Derived from Aegiliops tauschii ssp. tauschii

Ma Yu; Guo-Yue Chen; Lianquan Zhang; Yaxi Liu; Dengcai Liu; Ji-Rui Wang; Zhi-en Pu; Li Zhang; Xiu-Jin Lan; Yu-Ming Wei; Chunji Liu; You-Liang Zheng

Aegiliops tauschii is classified into two subspecies: Ae. tauschii ssp. tauschii and Ae. tauschii ssp. strangulata. Novel genetic variations exist in Ae. tauschii ssp. tauschii that can be utilized in wheat improvement. We synthesized a hexaploid wheat genotype (SHW-L1) by crossing an Ae. tauschii ssp. tauschii accession (AS60) with a tetraploid wheat genotype (AS2255). A population consisting of 171 F8 recombinant inbred lines was developed from SHW-L1 and Chuanmai 32 to identify QTLs associated with agronomic traits. A new genetic map with high density was constructed and used to detect the QTLs for heading date, kernel width, spike length, spikelet number, and thousand kernel weight. A total of 30 putative QTLs were identified for five investigated traits. Thirteen QTLs were located on D genomes of SHW-L1, six of them showed positive effect on agronomic traits. Chromosome region flanked by wPt-6133–wPt-8134 on 2D carried five environment-independent QTLs. Each QTL accounted for more than 10% phenotypic variance. These QTLs were highly consistent across environments and should be used in wheat breeding.

Collaboration


Dive into the Ji-Rui Wang's collaboration.

Top Co-Authors

Avatar

You-Liang Zheng

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yu-Ming Wei

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qian-Tao Jiang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yaxi Liu

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guo-Yue Chen

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Peng-Fei Qi

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiu-Jin Lan

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ze-Hong Yan

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhi-En Pu

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jian Ma

Sichuan Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge