Jian Pu
University of Science and Technology of China
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jian Pu.
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition | 2016
Xue-yi Wang; Jian Pu; Rui-ming Yuan; Jianhua Wang
Commercial aero-engines may operate in dust-laden environments, such as taking off and landing on desert ground or flying through volcano dust cloud, and foreign particles frequently deposit at hot surface and film hole-exits, which results in partial blockage of film holes, clog of cooling air, reduction in cooling effect, and could induce catastrophic damage. This problem has not been well solved up to now. This paper presents an experimental investigation on two surface deposition models (deposition limited to upstream of hole with a peak height of 1.5 diameter of hole called D1.5, and downstream forming a trench with a peak height of 1.0 diameter of hole, called D1) and two blockage models (leading edge of hole LB, and trailing edge TB), as well as two combined models D1.5-LB, and D1-TB. The experiments are conducted in a low speed water tunnel using Planar Laser Induced Fluorescence (PLIF) technique. Through this experiment, the following interesting phenomena, which were not reported in previous literatures, are reveled: 1) The effect of blockage ratio at leading edge on cooling performance of combined D1.5-LB is opposite to individual LB, i.e. in the case of combined D1.5-LB, a higher blockage ratio corresponds to a lower cooling effectiveness; whereas, for individual LB, the cooling effectiveness increases with the blockage ratios in the tested range. 2) At all blowing ratios, the cooling performances of combined D1.5-LB are better than that of perfect model D0-B0 (without deposition and blockage). At all blockage ratios tested in this experiment, in the case of combined D1.5-LB, a higher blowing ratio corresponds to a higher cooling effectiveness and a lager film coverage length. 3) At lower blockage ratios of 0.1 and 0.3, the overall-averaged cooling effectiveness of combined D1-TB is higher than that of perfect model D0-B0. At large blockage ratio 0.5, the blockage effect is dominant, and the averaged cooling effectiveness of combined model D1-TB is lower than that of D0-B0. In the case of individual deposition model D1-B0, although the lateral-averaged film cooling effectiveness is augmented, the area of film cooling is reduced.Copyright
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition | 2014
Zhaoqing Ke; Jian Pu; Jianhua Wang; Lei Wang; Zhiqiang Zhang; Xiangyu Wu
The characteristics of fluid flow and heat transfer within a smooth three-pass channel of a real low pressure (LP) turbine blade have been investigated through experimental and numerical approaches. The serpentine channel consists of two inlet passes, two dividing walls, two 180 degree bends, twenty-five exits at the trailing edge, and two exits at the blade tip. In the experiments, purified water was used as working medium, the secondary flow patterns at five cross-sections were captured by a particle image velocimetry (PIV) system, the inlet Reynolds number was controlled by a turbine flow meter, and the mass flow rate ejected from each exit was measured by rotameters. Using the commercial software ANSYS CFX 13.0, numerical investigations were carried out. The practicability of four turbulence models, the SSG RSM, SST k-ω, RNG k-e and standard k-e models, were estimated. Through qualitative and quantitative comparisons of the secondary flow patterns, local velocity variation trends and mass flow rates between the experimental data and numerical results, the SSG RSM was selected as the most appropriate model in the following numerical investigations. Using ideal gas as working medium, the impacts of Reynolds numbers and rotation numbers on the heat transfer performances were numerically investigated. The numerical results predicted three interesting phenomena: 1) The locally averaged Nusselt number increases generally with the inlet Reynolds numbers. However, the increasing amplitude is significantly different from the correlation suggested by Dittus-Boelter, Nuo = 0.023Re0.8Pr0.4. The effect of the Reynolds number on the Nusselt number is substantially enhanced due to the serpentine channel design with two 180 degree-bends. The enhancement amplitude is described by two fitted coefficients based on Dittus-Boelter correlation. 2) Under a rotation condition, in the 1st and 3rd passes, the enhancement amplitude of the average Nusselt number on the pressure side (PS) is more significant than that on the suction side (SS), whereas in the 2nd pass, the enhancement amplitude on the PS is lower than that on the SS. 3) In the 3rd pass, a higher rotation number leads to a more uniform distribution of the local Nusselt number along the streamwise direction on both the PS and SS.Copyright
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition | 2013
Jian Pu; Zhaoqing Ke; Jianhua Wang; Lei Wang; Hongde You
This paper presents an experimental investigation on the characteristics of the fluid flow within an entire coolant channel of a low pressure (LP) turbine blade. The serpentine channel, which keeps realistic blade geometry, consists of three passes connected by a 180° sharp bend and a semi-round bend, 2 tip exits and 25 trailing edge exits. The mean velocity fields within several typical cross sections were captured using a particle image velocimetry (PIV) system. Pressure and flow rate at each exit were determined through the measurements of local static pressure and volume flow rate. To optimize the design of LP turbine blade coolant channels, the effect of tip ejection ratio (ER) from 180° sharp bend on the flow characteristics in the coolant channel were experimentally investigated at a series of inlet Reynolds numbers from 25,000 to 50,000. A complex flow pattern, which is different from the previous investigations conducted by a simplified square or rectangular two-pass U-channel, is exhibited from the PIV results. This experimental investigation indicated that: a) in the main flow direction, the regions of separation bubble and flow impingement increase in size with a decrease of the ER; b) the shape, intensity and position of the secondary vortices are changed by the ER; c) the mass flow ratio of each exit to inlet is not sensitive to the inlet Reynolds number; d) the increase of the ER reduces the mass flow ratio through each trailing edge exit to the extent of about 23–28% of the ER = 0 reference under the condition that the tip exit located at 180° bend is full open; e) the pressure drop through the entire coolant channel decreases with an increase in the ER and inlet Reynolds number, and a reduction about 35–40% of the non-dimensional pressure drop is observed at different inlet Reynolds numbers, under the condition that the tip exit located at 180° bend is full open.Copyright
Experimental Thermal and Fluid Science | 2013
Jian Pu; Zhaoqing Ke; Jianhua Wang; Hongde You; Zhi-Neng Du
Experimental Thermal and Fluid Science | 2014
Jian Pu; Jun Yu; Jianhua Wang; Wenshuo Yang; Zhiqiang Zhang; Lei Wang
Experimental Thermal and Fluid Science | 2015
Jian Pu; Jianhua Wang; Shiyan Ma; Xiangyu Wu
Journal of Turbomachinery-transactions of The Asme | 2016
Wenshuo Yang; Jian Pu; Jianhua Wang
Experimental Thermal and Fluid Science | 2018
Hang Su; Jian Pu; Jianhua Wang; Rui-ming Yuan; Yong-xian Luan; Bin-peng Kang
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition | 2017
Wei Wang; Jian Pu; Rui-ming Yuan; Jianhua Wang; Yong-xian Luan; Bin-peng Kang
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition | 2015
Wenshuo Yang; Jian Pu; Jianhua Wang