Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiang I. Wu is active.

Publication


Featured researches published by Jiang I. Wu.


Neuron | 2007

An Essential Switch in Subunit Composition of a Chromatin Remodeling Complex during Neural Development

Julie Lessard; Jiang I. Wu; Jeffrey A. Ranish; Mimi Wan; Monte M. Winslow; Brett T. Staahl; Hai Wu; Ruedi Aebersold; Isabella A. Graef; Gerald R. Crabtree

Mammalian neural stem cells (NSCs) have the capacity to both self-renew and to generate all the neuronal and glial cell-types of the adult nervous system. Global chromatin changes accompany the transition from proliferating NSCs to committed neuronal lineages, but the mechanisms involved have been unclear. Using a proteomics approach, we show that a switch in subunit composition of neural, ATP-dependent SWI/SNF-like chromatin remodeling complexes accompanies this developmental transition. Proliferating neural stem and progenitor cells express complexes in which BAF45a, a Krüppel/PHD domain protein and the actin-related protein BAF53a are quantitatively associated with the SWI2/SNF2-like ATPases, Brg and Brm. As neural progenitors exit the cell cycle, these subunits are replaced by the homologous BAF45b, BAF45c, and BAF53b. BAF45a/53a subunits are necessary and sufficient for neural progenitor proliferation. Preventing the subunit switch impairs neuronal differentiation, indicating that this molecular event is essential for the transition from neural stem/progenitors to postmitotic neurons. More broadly, these studies suggest that SWI/SNF-like complexes in vertebrates achieve biological specificity by combinatorial assembly of their subunits.


Proceedings of the National Academy of Sciences of the United States of America | 2009

An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency

Lena Ho; Jehnna L. Ronan; Jiang I. Wu; Brett T. Staahl; Lei Chen; Ann Kuo; Julie Lessard; Alexey I. Nesvizhskii; Jeff Ranish; Gerald R. Crabtree

Mammalian SWI/SNF [also called BAF (Brg/Brahma-associated factors)] ATP-dependent chromatin remodeling complexes are essential for formation of the totipotent and pluripotent cells of the early embryo. In addition, subunits of this complex have been recovered in screens for genes required for nuclear reprogramming in Xenopus and mouse embryonic stem cell (ES) morphology. However, the mechanism underlying the roles of these complexes is unclear. Here, we show that BAF complexes are required for the self-renewal and pluripotency of mouse ES cells but not for the proliferation of fibroblasts or other cells. Proteomic studies reveal that ES cells express distinctive complexes (esBAF) defined by the presence of Brg (Brahma-related gene), BAF155, and BAF60A, and the absence of Brm (Brahma), BAF170, and BAF60C. We show that this specialized subunit composition is required for ES cell maintenance and pluripotency. Our proteomic analysis also reveals that esBAF complexes interact directly with key regulators of pluripotency, suggesting that esBAF complexes are specialized to interact with ES cell-specific regulators, providing a potential explanation for the requirement of BAF complexes in pluripotency.


Neuron | 2007

Regulation of Dendritic Development by Neuron-Specific Chromatin Remodeling Complexes

Jiang I. Wu; Julie Lessard; Ivan Olave; Zilong Qiu; Anirvan Ghosh; Isabella A. Graef; Gerald R. Crabtree

The diversity of dendritic patterns is one of the fundamental characteristics of neurons and is in part regulated by transcriptional programs initiated by electrical activity. We show that dendritic outgrowth requires a family of combinatorially assembled, neuron-specific chromatin remodeling complexes (nBAF complexes) distinguished by the actin-related protein BAF53b and based on the Brg/Brm ATPases. nBAF complexes bind tightly to the Ca(2+)-responsive dendritic regulator CREST and directly regulate genes essential for dendritic outgrowth. BAF53b is not required for nBAF complex assembly or the interaction with CREST, yet is required for their recruitment to the promoters of specific target genes. The highly homologous BAF53a protein, which is a component of neural progenitor and nonneural BAF complexes, cannot replace BAF53bs role in dendritic development. Remarkably, we find that this functional specificity is conferred by the actin fold subdomain 2 of BAF53b. These studies suggest that the genes encoding the individual subunits of BAF complexes function like letters in a ten-letter word to produce biologically specific meanings (in this case dendritic outgrowth) by combinatorial assembly of their products.


Cell | 2009

Understanding the Words of Chromatin Regulation

Jiang I. Wu; Julie Lessard; Gerald R. Crabtree

Recent studies indicate that chromatin regulatory complexes produce biological specificity in the way that letters produce meanings by combinations into words. Combinatorial assembly of chromatin regulatory complexes may be critical for maximizing the information content provided by arrays of histone modifications.


Developmental Cell | 2008

Endocardial Brg1 Represses ADAMTS1 to Maintain the Microenvironment for Myocardial Morphogenesis

Kryn Stankunas; Calvin T. Hang; Zhi Yang Tsun; Hanying Chen; Nathan V. Lee; Jiang I. Wu; Ching Shang; J. Henri Bayle; Weinian Shou; M. Luisa Iruela-Arispe; Ching Pin Chang

Developing myocardial cells respond to signals from the endocardial layer to form a network of trabeculae that characterize the ventricles of the vertebrate heart. Abnormal myocardial trabeculation results in specific cardiomyopathies in humans and yet trabecular development is poorly understood. We show that trabeculation requires Brg1, a chromatin remodeling protein, to repress ADAMTS1 expression in the endocardium that overlies the developing trabeculae. Repression of ADAMTS1, a secreted matrix metalloproteinase, allows the establishment of an extracellular environment in the cardiac jelly that supports trabecular growth. Later during embryogenesis, ADAMTS1 expression initiates in the endocardium to degrade the cardiac jelly and prevent excessive trabeculation. Thus, the composition of cardiac jelly essential for myocardial morphogenesis is dynamically controlled by ADAMTS1 and its chromatin-based transcriptional regulation. Modification of the intervening microenvironment provides a mechanism by which chromatin regulation within one tissue layer coordinates the morphogenesis of an adjacent layer.


Cell | 2013

Olig2 Targets Chromatin Remodelers to Enhancers to Initiate Oligodendrocyte Differentiation

Yang Yu; Ying Chen; Bongwoo Kim; Haibo Wang; Chuntao Zhao; Xuelian He; Lei Liu; Wei Liu; Lai Man N. Wu; Meng Mao; Jonah R. Chan; Jiang I. Wu; Q. Richard Lu

Establishment of oligodendrocyte identity is crucial for subsequent events of myelination in the CNS. Here, we demonstrate that activation of ATP-dependent SWI/SNF chromatin-remodeling enzyme Smarca4/Brg1 at the differentiation onset is necessary and sufficient to initiate and promote oligodendrocyte lineage progression and maturation. Genome-wide multistage studies by ChIP-seq reveal that oligodendrocyte-lineage determination factor Olig2 functions as a prepatterning factor to direct Smarca4/Brg1 to oligodendrocyte-specific enhancers. Recruitment of Smarca4/Brg1 to distinct subsets of myelination regulatory genes is developmentally regulated. Functional analyses of Smarca4/Brg1 and Olig2 co-occupancy relative to chromatin epigenetic marking uncover stage-specific cis-regulatory elements that predict sets of transcriptional regulators controlling oligodendrocyte differentiation. Together, our results demonstrate that regulation of the functional specificity and activity of a Smarca4/Brg1-dependent chromatin-remodeling complex by Olig2, coupled with transcriptionally linked chromatin modifications, is critical to precisely initiate and establish the transcriptional program that promotes oligodendrocyte differentiation and subsequent myelination of the CNS.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Function of quaking in myelination: Regulation of alternative splicing

Jiang I. Wu; Robyn B. Reed; Paula J. Grabowski; Karen Artzt

Proteomic diversity is frequently achieved by alternative RNA-splicing events that can be fine-tuned in tissue-specific and developmentally regulated ways. Understanding this type of genetic regulation is compelling because of the extensive complexity of alternative splicing found in the nervous system. quaking (qk), one of the classical mouse dysmyelination mutants, is defective for the expression of myelin-associated glycoprotein (MAG), and the misregulation of MAG pre-mRNA alternative splicing is implicated as a causal factor. The qk locus encodes several RNA-binding proteins with heterogeneous nuclear ribonucleoprotein K-type homology, a characteristic of several known alternative splicing regulators. Here we test the nuclear-localized qk isoform (QKI-5) for its ability to regulate alternative splicing of MAG pre-mRNA in transient coexpression assays. QKI-5 exhibits properties of a negative regulator of MAG exon 12 alternative splicing. An intronic sequence element required for the repressive function and binding of QKI-5 is also identified. Direct evidence for irregularities in alternative splicing of MAG and other myelin protein transcripts in the qk mouse is demonstrated.


Nature Neuroscience | 2013

The Neuron-specific Chromatin Regulatory Subunit BAF53b is Necessary for Synaptic Plasticity and Memory

Annie Vogel-Ciernia; Dina P. Matheos; Ruth M. Barrett; Enikoe A. Kramar; Soraya Azzawi; Yuncai Chen; Christophe N. Magnan; Michael Zeller; Angelina Sylvain; Jakob Haettig; Yousheng Jia; Anthony Tran; Richard Dang; Rebecca J. Post; Meredith A. Chabrier; Alex H. Babayan; Jiang I. Wu; Gerald R. Crabtree; Pierre Baldi; Tallie Z. Baram; Gary Lynch; Marcelo A. Wood

Recent exome sequencing studies have implicated polymorphic Brg1-Associated Factor (BAF) complexes (mammalian SWI/SNF chromatin remodeling complexes) in several human intellectual disabilities and cognitive disorders. However, it is currently unknown how mutations in BAF complexes result in impaired cognitive function. Postmitotic neurons express a neuron-specific assembly, nBAF, characterized by the neuron-specific subunit BAF53b. Mice harboring selective genetic manipulations of BAF53b have severe defects in long-term memory and long-lasting forms of hippocampal synaptic plasticity. We rescued memory impairments in BAF53b mutant mice by reintroducing BAF53b in the adult hippocampus, which suggests a role for BAF53b beyond neuronal development. The defects in BAF53b mutant mice appeared to derive from alterations in gene expression that produce abnormal postsynaptic components, such as spine structure and function, and ultimately lead to deficits in synaptic plasticity. Our results provide new insight into the role of dominant mutations in subunits of BAF complexes in human intellectual and cognitive disorders.


Journal of Biological Chemistry | 1999

The Quaking I-5 Protein (QKI-5) Has a Novel Nuclear Localization Signal and Shuttles between the Nucleus and the Cytoplasm

Jiang I. Wu; Li Zhou; Kathryn F. Tonissen; Ronald Tee; Karen Artzt

The mouse quaking (qk) gene is essential in both myelination and early embryogenesis. Its product, QKI, is an RNA-binding protein belonging to a growing protein family called STAR (signal transduction andactivator of RNA). All members have an ∼200-amino acid STAR domain, which contains a single extended heteronuclear ribonucleoprotein K homologue domain flanked by two domains called QUA1 and QUA2. We found that QKI isoforms could associate with each other, while one of the lethal mutationsqkI kt4 with a single amino acid change in QUA1 domain, leads to a loss of QKI self-interaction. This suggests that the QUA1 domain is responsible for QKI dimerization. Three QKI isoforms have different carboxyl termini and different subcellular localization. Here, using GFP fusion protein, we identified a 7-amino acid novel nuclear localization sequence in the carboxyl terminus of QKI-5, which is conserved in a subclass of STAR proteins containing SAM68 and ETLE/T-STAR. Thus, we name this motif STAR-NLS. In addition, the effects of active transcription, RNA-binding and self-interaction on QKI-5 localization were analyzed. Furthermore, using an interspecies heterokaryon assay, we found that QKI-5, but not another STAR protein ETLE, shuttles between the nucleus and the cytoplasm, which suggests that QKI-5 functions in both cell compartments.


Mammalian Genome | 1999

Genomic organization and expression analysis of the mouse qkI locus

Tatsuya Kondo; Tokiko Furuta; Kanae Mitsunaga; Thomas A. Ebersole; Motoaki Shichiri; Jiang I. Wu; Karen Artzt; Ken Ichi Yamamura; Kuniya Abe

Abstract.qkI, encoding a KH domain-containing RNA binding protein, has been isolated as a candidate gene for the mouse neurological mutation quaking. Here, we describe detailed studies on its genomic structure and expression pattern. We isolated approximately 1 Mb of genomic region containing the quaking locus and determined its genomic organization. The qkI locus contains at least 9 exons spanning ∼65 kb of DNA. It gives rise to six distinct transcripts encoding, theoretically, five different protein isoforms. Exons 1 through 4 are shared by all the transcripts, whereas coding exons and two distinct 3′-UTRs downstream to the exon 4 are differentially utilized. One isoform has a truncated KH domain and may act as an antagonist to the others. These findings and identification of a single transcription initiation site suggest that differential expression of each transcript is regulated by alternative splicing. Expression of each alternative transcript and protein product was also examined. Two types of transcripts, 5 kb-A and B, are most abundant in the brain of newborn mice and are gradually downregulated thereafter. In contrast, the other three messages, 6 kb, 7 kb-A and B, increase as myelination proceeds and peak at 2 weeks of age, corresponding to the most active stage of myelination. Although the qkI messages and their products are abundant in brain and heart, a lower level of expression was found in various other tissues tested. Alternative transcripts that share the same 3′-UTR showed very similar expression patterns, suggesting a regulatory role of the 3′-UTRs in qkI gene expression.

Collaboration


Dive into the Jiang I. Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Artzt

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Xuanming Shi

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Zilai Zhang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xiaoming Zhan

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mou Cao

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Julie Lessard

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Amelia J. Eisch

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Brett T. Staahl

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

David Petrik

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge