Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiang Tian is active.

Publication


Featured researches published by Jiang Tian.


Journal of Biological Chemistry | 2007

Identification of a Pool of Non-pumping Na/K-ATPase *

Man Liang; Jiang Tian; Lijun Liu; Sandrine V. Pierre; Jiang Liu; Joseph I. Shapiro; Zijian Xie

Recent studies have ascribed many non-pumping functions to the Na/K-ATPase. Here, we present experimental evidence demonstrating that over half of the plasma membrane Na/K-ATPase in LLC-PK1 cells is performing cellular functions other than ion pumping. This “non-pumping” pool of Na/K-ATPase, like the pumping pump, binds ouabain. Depletion of either cholesterol or caveolin-1 moves some of the “non-pumping” Na/K-ATPase into the pumping pool. Graded knock-down of the α1 subunit of the Na/K-ATPase eventually results in loss of this “non-pumping” pool while preserving the pumping pool. Our prior studies indicate that a loss of the non-pumping pool is associated with a loss of receptor function as evidenced by the failure of ouabain administration to induce the activation of Src and/or ERK. Therefore, our new findings suggest that a substantial amount of surface-expressed Na/K-ATPase, at least in some types of cells, may function as non-canonical ouabain-binding receptors.


Journal of Biological Chemistry | 2006

Functional Characterization of Src-interacting Na/K-ATPase Using RNA Interference Assay

Man Liang; Ting Cai; Jiang Tian; Weikai Qu; Zijian Xie

We have shown that the Na/K-ATPase and Src form a signaling receptor complex. Here we determined how alterations in the amount and properties of the Na/K-ATPase affect basal Src activity and ouabain-induced signal transduction. Several α1 subunit knockdown cell lines were generated by transfecting LLC-PK1 cells with a vector expressing α1-specific small interference RNA. Although the α1 knockdown resulted in significant decreases in Na/K-ATPase activity, it increased the basal Src activity and tyrosine phosphorylation of focal adhesion kinase, a Src effector. Concomitantly it also abolished ouabaininduced activation of Src and ERK1/2. When the knockdown cells were rescued by a rat α1, both Na/K-ATPase activity and the basal Src activity were restored. In addition, ouabain was able to stimulate Src and ERK1/2 in the rescued cells at a much higher concentration, consistent with the established differences in ouabain sensitivity between pig and rat α1. Finally both fluorescence resonance energy transfer analysis and co-immunoprecipitation assay indicated that the pumping-null rat α1 (D371E) mutant could also bind Src. Expression of this mutant restored the basal Src activity and focal adhesion kinase tyrosine phosphorylation. Taken together, the new findings suggest that LLC-PK1 cells contain a pool of Src-interacting Na/K-ATPase that not only regulates Src activity but also serves as a receptor for ouabain to activate protein kinases.


Journal of Biological Chemistry | 2009

NaKtide, a Na/K-ATPase-derived peptide Src inhibitor, antagonizes ouabain-activated signal transduction in cultured cells.

Zhichuan Li; Ting Cai; Jiang Tian; Joe X. Xie; Xiaochen Zhao; Lijun Liu; Joseph I. Shapiro; Zijian Xie

We have previously shown that the Na/K-ATPase binds and inhibits Src. Here, we report the molecular mechanism of Na/K-ATPase-mediated Src regulation and the generation of a novel peptide Src inhibitor that targets the Na/K-ATPase/Src receptor complex and antagonizes ouabain-induced protein kinase cascades. First, the Na/K-ATPase inhibits Src kinase through the N terminus of the nucleotide-binding domain of the α1 subunit. Second, detailed mapping leads to the identification of a 20-amino acid peptide (NaKtide) that inhibits Src (IC50 = 70 nm) in an ATP concentration-independent manner. Moreover, NaKtide does not directly affect the ERK and protein kinase C family of kinases. It inhibits Lyn with a much lower potency (IC50 = 2.5 μm). Third, highly positively charged leader peptide conjugates including HIV-Tat-NaKtide (pNaKtide) readily enter cultured cells. Finally, the following functional studies of pNaKtide demonstrate that this conjugate can specifically target the Na/K-ATPase-interacting pool of Src and act as a potent ouabain antagonist in cultured cells: 1) pNaKtide, unlike PP2, resides in the membranes. Consistently, it affects the basal Src activity much less than that of PP2. 2) pNaKtide is effective in disrupting the formation of the Na/K-ATPase/Src receptor complex in a dose-dependent manner. Consequently, it blocks ouabain-induced activation of Src, ERK, and hypertrophic growth in cardiac myocytes. 3) Unlike PP2, pNaKtide does not affect IGF-induced ERK activation in cardiac myocytes. Taken together, we suggest that pNaKtide may be used as a novel antagonist of ouabain for probing the physiological and pathological significance of the newly appreciated signaling function of Na/K-ATPase and cardiotonic steroids.


Physiology | 2008

The Na-K-ATPase and Calcium-Signaling Microdomains

Jiang Tian; Zijian Xie

The Na-K-ATPase is an energy-transducing ion pump that converts the free energy of ATP into transmembrane ion gradients. It also serves as a functional receptor for cardiotonic steroids such as ouabain and digoxin. Binding of ouabain to the Na-K-ATPase can activate calcium signaling in a cell-specific manner. The exquisite calcium modulation via the Na-K-ATPase is achieved by the ability of the pump to integrate signals from numerous protein and non-protein molecules, including ion transporters, channels, protein kinases/phosphatases, as well as cellular Na+. This review focuses on the unique properties of the Na-K-ATPase and its role in the formation of different calcium-signaling microdomains.


Journal of Cardiovascular Pharmacology | 2003

Positive inotropic effect of ouabain on isolated heart is accompanied by activation of signal pathways that link Na+/K+-ATPase to ERK1/2.

Kamiar Mohammadi; Lijun Liu; Jiang Tian; Peter Kometiani; Zijian Xie; Amir Askari

Exposure of cultured rat cardiac myocytes to ouabain is known to cause the interaction of Na+/K+-ATPase with adjacent proteins, leading to activation of multiple signal transduction pathways, regulation of growth-related genes, and hypertrophy. The aim of this work was to determine if the proximal signaling events identified in cultured myocytes also occur in isolated intact hearts of rat and guinea pig in response to positive inotropic doses of ouabain. Langendorff rat heart preparations were exposed to 50 &mgr;M ouabain to produce positive inotropy without toxicity, and assayed for Src kinase, protein kinase C, and extracellular signal-regulated kinases 1 and 2 (ERK1/2). These kinases were rapidly activated by ouabain as in cultured cells. In isolated guinea pig hearts, 1 &mgr;M ouabain caused ERK1/2 activation comparable to the effect of 50 &mgr;M ouabain in rat heart and consistent with the higher ouabain sensitivity of the contractility of guinea pig heart. These data show that the proximal ouabain-induced signal pathways previously noted in cultured cells are not artifacts of dispersion/culturing of myocytes, and are not the peculiar properties of the rat heart with its relatively low ouabain sensitivity. They also suggest that treatment with positive inotropic doses of cardiac glycosides is likely to be associated with changes in the cardiac phenotype.


Hypertension | 2009

Spironolactone Attenuates Experimental Uremic Cardiomyopathy by Antagonizing Marinobufagenin

Jiang Tian; Amjad Shidyak; Sankaridrug M. Periyasamy; Steven T. Haller; Mohamed Taleb; Nasser El-Okdi; Jihad Elkareh; Shalini Gupta; Sabry Gohara; Olga V. Fedorova; Christopher J. Cooper; Zijian Xie; Deepak Malhotra; Alexei Y. Bagrov; Joseph I. Shapiro

Spironolactone has been noted to attenuate cardiac fibrosis. We have observed that the cardiotonic steroid marinobufagenin plays an important role in the diastolic dysfunction and cardiac fibrosis seen with experimental renal failure. We performed the following studies to determine whether and how spironolactone might ameliorate these changes. First, we studied rats subjected to partial nephrectomy or administration of exogenous marinobufagenin. We found that spironolactone (20 mg/kg per day) attenuated the diastolic dysfunction as assessed by ventricular pressure-volume loops and essentially eliminated cardiac fibrosis as assessed by trichrome staining and Western blot. Next, we examined the effects of spironolactone and its major metabolite, canrenone (both 100 nM), on marinobufagenin stimulation of rat cardiac fibroblasts. Both spironolactone and canrenone prevented the stimulation of collagen production by 1 nM marinobufagenin but not 100 nM marinobufagenin, as assessed by proline incorporation and procollagen 1 expression, as well as signaling through the sodium-potassium-ATPase, as evidenced by protein kinase C isoform &dgr; translocation and extracellular signal regulated kinase 1/2 activation. Both spironolactone and canrenone also altered ouabain binding to cultured porcine cells in a manner consistent with competitive inhibition. Our data suggest that some of the antifibrotic effects of spironolactone may be attributed to antagonism of marinobufagenin signaling through the sodium-potassium-ATPase.


Journal of Biological Chemistry | 2011

Na/K-ATPase Mimetic pNaKtide Peptide Inhibits the Growth of Human Cancer Cells

Zhichuan Li; Zhongbing Zhang; Joe X. Xie; Xin Li; Jiang Tian; Ting Cai; Hongjuan Cui; Hanfei Ding; Joseph I. Shapiro; Zijian Xie

Cells contain a large pool of nonpumping Na/K-ATPase that participates in signal transduction. Here, we show that the expression of α1 Na/K-ATPase is significantly reduced in human prostate carcinoma as well as in several human cancer cell lines. This down-regulation impairs the ability of Na/K-ATPase to regulate Src-related signaling processes. A supplement of pNaKtide, a peptide derived from α1 Na/K-ATPase, reduces the activities of Src and Src effectors. Consequently, these treatments stimulate apoptosis and inhibit growth in cultures of human cancer cells. Moreover, administration of pNaKtide inhibits angiogenesis and growth of tumor xenograft. Thus, the new findings demonstrate the in vivo effectiveness of pNaKtide and suggest that the defect in Na/K-ATPase-mediated signal transduction may be targeted for developing new anticancer therapeutics.


Journal of Biological Chemistry | 2013

Involvement of Reactive Oxygen Species in a Feed-forward Mechanism of Na/K-ATPase-mediated Signaling Transduction

Yanling Yan; Anna P. Shapiro; Steven T. Haller; Vinai Katragadda; Lijun Liu; Jiang Tian; Venkatesha Basrur; Deepak Malhotra; Zi Jian Xie; Nader G. Abraham; Joseph I. Shapiro; Jiang Liu

Background: Na/K-ATPase signaling regulates sodium reabsorption in renal proximal tubules. Results: Carbonylation modification of the Na/K-ATPase α1 subunit regulates Na/K-ATPase signaling and subsequent transepithelial sodium transport. Conclusion: ROS is involved in the Na/K-ATPase signaling transduction in a feed-forward mechanism. Significance: ROS regulates Na/K-ATPase signaling and sodium transport in LLC-PK1 cells. Cardiotonic steroids (such as ouabain) signaling through Na/K-ATPase regulate sodium reabsorption in the renal proximal tubule. We report here that reactive oxygen species are required to initiate ouabain-stimulated Na/K-ATPase·c-Src signaling. Pretreatment with the antioxidant N-acetyl-l-cysteine prevented ouabain-stimulated Na/K-ATPase·c-Src signaling, protein carbonylation, redistribution of Na/K-ATPase and sodium/proton exchanger isoform 3, and inhibition of active transepithelial 22Na+ transport. Disruption of the Na/K-ATPase·c-Src signaling complex attenuated ouabain-stimulated protein carbonylation. Ouabain-stimulated protein carbonylation is reversed after removal of ouabain, and this reversibility is largely independent of de novo protein synthesis and degradation by either the lysosome or the proteasome pathways. Furthermore, ouabain stimulated direct carbonylation of two amino acid residues in the actuator domain of the Na/K-ATPase α1 subunit. Taken together, the data indicate that carbonylation modification of the Na/K-ATPase α1 subunit is involved in a feed-forward mechanism of regulation of ouabain-mediated renal proximal tubule Na/K-ATPase signal transduction and subsequent sodium transport.


Journal of Biological Chemistry | 2011

Regulation of α1 Na/K-ATPase Expression by Cholesterol

Yiliang Chen; Xin Li; Qiqi Ye; Jiang Tian; Runming Jing; Zijian Xie

We have reported that α1 Na/K-ATPase regulates the trafficking of caveolin-1 and consequently alters cholesterol distribution in the plasma membrane. Here, we report the reciprocal regulation of α1 Na/K-ATPase by cholesterol. Acute exposure of LLC-PK1 cells to methyl β-cyclodextrin led to parallel decreases in cellular cholesterol and the expression of α1 Na/K-ATPase. Cholesterol repletion fully reversed the effect of methyl β-cyclodextrin. Moreover, inhibition of intracellular cholesterol trafficking to the plasma membrane by compound U18666A had the same effect on α1 Na/K-ATPase. Similarly, the expression of α1, but not α2 and α3, Na/K-ATPase was significantly reduced in the target organs of Niemann-Pick type C mice where the intracellular cholesterol trafficking is blocked. Mechanistically, decreases in the plasma membrane cholesterol activated Src kinase and stimulated the endocytosis and degradation of α1 Na/K-ATPase through Src- and ubiquitination-dependent pathways. Thus, the new findings, taken together with what we have already reported, revealed a previously unrecognized feed-forward mechanism by which cells can utilize the Src-dependent interplay among Na/K-ATPase, caveolin-1, and cholesterol to effectively alter the structure and function of the plasma membrane.


Journal of Biological Chemistry | 2011

Identification of a Potential Receptor That Couples Ion Transport to Protein Kinase Activity

Qiqi Ye; Zhichuan Li; Jiang Tian; Jeffrey X. Xie; Lijun Liu; Zijian Xie

In our previous studies, we have demonstrated that the Src-coupled α1 Na/K-ATPase works as a receptor for cardiotonic steroids, such as ouabain, to regulate cellular protein kinase cascades. Here, we explore further the structural determinants of the interaction between the α1 Na/K-ATPase and Src and demonstrate that the Src-coupled α1 Na/K-ATPase allows the cell to decode the transmembrane transport activity of the Na/K-ATPase to turn on/off protein kinases. The α1 Na/K-ATPase undergoes E1/E2 conformational transition during an ion pumping cycle. The amount of E1 and E2 Na/K-ATPase is regulated by extracellular K+ and intracellular Na+. Using purified enzyme preparations we find that the E1 Na/K-ATPase can bind both the Src SH2 and kinase domains simultaneously and keep Src in an inactive state. Conversely, the E1 to E2 transition releases the kinase domain and activates the associated Src. Moreover, we demonstrate that changes in E1/E2 Na/K-ATPase by either Na+ or K+ are capable of regulating Src and Src effectors in live cells. Together, the data suggest that the Src-coupled α1 Na/K-ATPase may act as a Na+/K+ receptor, allowing salt to regulate cellular function through Src and Src effectors.

Collaboration


Dive into the Jiang Tian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lijun Liu

University of Toledo Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge