Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiang-Yan Yang is active.

Publication


Featured researches published by Jiang-Yan Yang.


Diabetes | 2008

Alterations in MicroRNA Expression Contribute to Fatty Acid–Induced Pancreatic β-Cell Dysfunction

Pascal Lovis; E. Roggli; D. Ross Laybutt; Sonia Gattesco; Jiang-Yan Yang; Christian Widmann; Amar Abderrahmani; Romano Regazzi

OBJECTIVE—Visceral obesity and elevated plasma free fatty acids are predisposing factors for type 2 diabetes. Chronic exposure to these lipids is detrimental for pancreatic β-cells, resulting in reduced insulin content, defective insulin secretion, and apoptosis. We investigated the involvement in this phenomenon of microRNAs (miRNAs), a class of noncoding RNAs regulating gene expression by sequence-specific inhibition of mRNA translation. RESEARCH DESIGN AND METHODS—We analyzed miRNA expression in insulin-secreting cell lines or pancreatic islets exposed to palmitate for 3 days and in islets from diabetic db/db mice. We studied the signaling pathways triggering the changes in miRNA expression and determined the impact of the miRNAs affected by palmitate on insulin secretion and apoptosis. RESULTS—Prolonged exposure of the β-cell line MIN6B1 and pancreatic islets to palmitate causes a time- and dose-dependent increase of miR34a and miR146. Elevated levels of these miRNAs are also observed in islets of diabetic db/db mice. miR34a rise is linked to activation of p53 and results in sensitization to apoptosis and impaired nutrient-induced secretion. The latter effect is associated with inhibition of the expression of vesicle-associated membrane protein 2, a key player in β-cell exocytosis. Higher miR146 levels do not affect the capacity to release insulin but contribute to increased apoptosis. Treatment with oligonucleotides that block miR34a or miR146 activity partially protects palmitate-treated cells from apoptosis but is insufficient to restore normal secretion. CONCLUSIONS—Our findings suggest that at least part of the detrimental effects of palmitate on β-cells is caused by alterations in the level of specific miRNAs.


Diabetes | 2008

Exendin-4 Protects β-Cells From Interleukin-1β–Induced Apoptosis by Interfering With the c-Jun NH2-Terminal Kinase Pathway

Mourad Ferdaoussi; Saida Abdelli; Jiang-Yan Yang; Marion Cornu; Guy Niederhauser; Dimitri Favre; Christian Widmann; Romano Regazzi; Bernard Thorens; Gérard Waeber; Amar Abderrahmani

OBJECTIVE— The pro-inflammatory cytokine interleukin-1β (IL-1β) generates pancreatic β-cells apoptosis mainly through activation of the c-Jun NH2-terminal kinase (JNK) pathway. This study was designed to investigate whether the long-acting agonist of the hormone glucagon-like peptide 1 (GLP-1) receptor exendin-4 (ex-4), which mediates protective effects against cytokine-induced β-cell apoptosis, could interfere with the JNK pathway. RESEARCH DESIGN AND METHODS— Isolated human, rat, and mouse islets and the rat insulin-secreting INS-1E cells were incubated with ex-4 in the presence or absence of IL-1β. JNK activity was assessed by solid-phase JNK kinase assay and quantification of c-Jun expression. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS— Ex-4 inhibited induction of the JNK pathway elicited by IL-1β. This effect was mimicked with the use of cAMP-raising agents isobutylmethylxanthine and forskolin and required activation of the protein kinase A. Inhibition of the JNK pathway by ex-4 or IBMX and forskolin was concomitant with a rise in the levels of islet-brain 1 (IB1), a potent blocker of the stress-induced JNK pathway. In fact, ex-4 as well as IBMX and forskolin induced expression of IB1 at the promoter level through cAMP response element binding transcription factor 1. Suppression of IB1 levels with the use of RNA interference strategy impaired the protective effects of ex-4 against apoptosis induced by IL-1β. CONCLUSIONS— The data establish the requirement of IB1 in the protective action of ex-4 against apoptosis elicited by IL-1β and highlight the GLP-1 mimetics as new potent inhibitors of the JNK signaling induced by cytokines.


Diabetologia | 2007

Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells

Amar Abderrahmani; Guy Niederhauser; Dimitri Favre; Saida Abdelli; Mourad Ferdaoussi; Jiang-Yan Yang; Romano Regazzi; Christian Widmann; Gérard Waeber

Aims/hypothesisWe explored the potential adverse effects of pro-atherogenic oxidised LDL-cholesterol particles on beta cell function.Materials and methodsIsolated human and rat islets and different insulin-secreting cell lines were incubated with human oxidised LDL with or without HDL particles. The insulin level was monitored by ELISA, real-time PCR and a rat insulin promoter construct linked to luciferase gene reporter. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei.ResultsProlonged incubation with human oxidised LDL particles led to a reduction in preproinsulin expression levels, whereas the insulin level was preserved in the presence of native LDL-cholesterol. The loss of insulin production occurred at the transcriptional levels and was associated with an increase in activator protein-1 transcriptional activity. The rise in activator protein-1 activity resulted from activation of c-Jun N-terminal kinases (JNK, now known as mitogen-activated protein kinase 8 [MAPK8]) due to a subsequent decrease in islet-brain 1 (IB1; now known as MAPK8 interacting protein 1) levels. Consistent with the pro-apoptotic role of the JNK pathway, oxidised LDL also induced a twofold increase in the rate of beta cell apoptosis. Treatment of the cells with JNK inhibitor peptides or HDL countered the effects mediated by oxidised LDL.Conclusions/interpretationThese data provide strong evidence that oxidised LDL particles exert deleterious effects in the progression of beta cell failure in diabetes and that these effects can be countered by HDL particles.


Molecular and Cellular Biology | 2001

Antiapoptotic Signaling Generated by Caspase-Induced Cleavage of RasGAP

Jiang-Yan Yang; Christian Widmann

ABSTRACT Activation of caspases 3 and 9 is thought to commit a cell irreversibly to apoptosis. There are, however, several documented situations (e.g., during erythroblast differentiation) in which caspases are activated and caspase substrates are cleaved with no associated apoptotic response. Why the cleavage of caspase substrates leads to cell death in certain cases but not in others is unclear. One possibility is that some caspase substrates generate antiapoptotic signals when cleaved. Here we show that RasGAP is one such protein. Caspases cleave RasGAP into a C-terminal fragment (fragment C) and an N-terminal fragment (fragment N). Fragment C expressed alone induces apoptosis, but this effect could be totally blocked by fragment N. Fragment N could also block apoptosis induced by low levels of caspase 9. As caspase activity increases, fragment N is further cleaved into fragments N1 and N2. Apoptosis induced by high levels of caspase 9 or by cisplatin was strongly potentiated by fragment N1 or N2 but not by fragment N. The present study supports a model in which RasGAP functions as a sensor of caspase activity to determine whether or not a cell should survive. When caspases are mildly activated, the partial cleavage of RasGAP protects cells from apoptosis. When caspase activity reaches levels that allow completion of RasGAP cleavage, the resulting RasGAP fragments turn into potent proapoptotic molecules.


Diabetes | 2009

Glucagon-Like Peptide-1 Protects β-Cells Against Apoptosis by Increasing the Activity of an Igf-2/Igf-1 Receptor Autocrine Loop

Marion Cornu; Jiang-Yan Yang; Evrim Jaccard; Carine Poussin; Christian Widmann; Bernard Thorens

OBJECTIVE The gluco-incretin hormones glucagon-like peptide (GLP)-1 and gastric inhibitory peptide (GIP) protect β-cells against cytokine-induced apoptosis. Their action is initiated by binding to specific receptors that activate the cAMP signaling pathway, but the downstream events are not fully elucidated. Here we searched for mechanisms that may underlie this protective effect. RESEARCH DESIGN AND METHODS We performed comparative transcriptomic analysis of islets from control and GipR−/−;Glp-1-R−/− mice, which have increased sensitivity to cytokine-induced apoptosis. We found that IGF-1 receptor expression was markedly reduced in the mutant islets. Because the IGF-1 receptor signaling pathway is known for its antiapoptotic effect, we explored the relationship between gluco-incretin action, IGF-1 receptor expression and signaling, and apoptosis. RESULTS We found that GLP-1 robustly stimulated IGF-1 receptor expression and Akt phosphorylation and that increased Akt phosphorylation was dependent on IGF-1 but not insulin receptor expression. We demonstrated that GLP-1–induced Akt phosphorylation required active secretion, indicating the presence of an autocrine activation mechanism; we showed that activation of IGF-1 receptor signaling was dependent on the secretion of IGF-2. We demonstrated, both in MIN6 cell line and primary β-cells, that reducing IGF-1 receptor or IGF-2 expression or neutralizing secreted IGF-2 suppressed GLP-1–induced protection against apoptosis. CONCLUSIONS An IGF-2/IGF-1 receptor autocrine loop operates in β-cells. GLP-1 increases its activity by augmenting IGF-1 receptor expression and by stimulating secretion; this mechanism is required for GLP-1–induced protection against apoptosis. These findings may lead to novel ways of preventing β-cell loss in the pathogenesis of diabetes.


Molecular and Cellular Biology | 2004

Partial Cleavage of RasGAP by Caspases Is Required for Cell Survival in Mild Stress Conditions

Jiang-Yan Yang; David Michod; Joël Walicki; Brona M. Murphy; Shailaja Kasibhatla; Seamus J. Martin; Christian Widmann

ABSTRACT Tight control of apoptosis is required for proper development and maintenance of homeostasis in multicellular organisms. Cells can protect themselves from potentially lethal stimuli by expressing antiapoptotic factors, such as inhibitors of apoptosis, FLICE (caspase 8)-inhibitory proteins, and members of the Bcl2 family. Here, we describe a mechanism that allows cells to survive once executioner caspases have been activated. This mechanism relies on the partial cleavage of RasGAP by caspase 3 into an amino-terminal fragment called fragment N. Generation of this fragment leads to the activation of the antiapoptotic Akt kinase, preventing further amplification of caspase activity. Partial cleavage of RasGAP is required for cell survival under stress conditions because cells expressing an uncleavable RasGAP mutant cannot activate Akt, cannot prevent amplification of caspase 3 activity, and eventually undergo apoptosis. Executioner caspases therefore control the extent of their own activation by a feedback regulatory mechanism initiated by the partial cleavage of RasGAP that is crucial for cell survival under adverse conditions.


Journal of Biological Chemistry | 2002

The RasGAP N-terminal Fragment Generated by Caspase Cleavage Protects Cells in a Ras/PI3K/Akt-dependent Manner That Does Not Rely on NFκB Activation

Jiang-Yan Yang; Christian Widmann

RasGAP, a regulator of Ras GTPase family members, is cleaved at low levels of caspase activity into an N-terminal fragment (fragment N) that generates potent anti-apoptotic signals. At higher levels of caspase activity, fragment N is further cleaved into two fragments that strongly potentiate apoptosis. RasGAP could thus function as a sensor of caspase activity to determine whether a cell should survive or not. Here we show that fragment N protects cells by activating the Ras-PI3K-Akt pathway. Surprisingly, even though nuclear factor κB (NFκB) can be activated by Akt, it plays no role in the anti-apoptotic functions of fragment N. This indicates that Akt effectors are differentially regulated when fragment N is generated.


Oncogene | 2004

A RasGAP-derived cell permeable peptide potently enhances genotoxin-induced cytotoxicity in tumor cells

David Michod; Jiang-Yan Yang; Jianhua Chen; Christophe Bonny; Christian Widmann

Treatment of many cancers relies on the combined action of several genotoxins, but the detrimental effect of these drugs on normal cells can cause severe side effects. One major challenge in anticancer therapy is therefore to increase the selectivity of current treatments toward cancer cells in order to spare normal cells. We have recently demonstrated that a RasGAP caspase cleavage fragment is able to sensitize HeLa cells towards cisplatin-induced apoptosis. Here, we extend this observation by showing that this fragment also enhances cell death induced by adriamycin and mitoxantrone, two other widely used genotoxins. Furthermore, we have delineated a short sequence within this fragment that still bears the genotoxin-sensitization property. The peptide encoded by this sequence, when fused to the TAT cell permeation sequence, potently sensitized a number of tumors cells, but not normal cells, towards apoptosis induced by cisplatin, adriamycin and mitoxantrone. This sensitization effect was not mediated through modulation of NFκB activity or activation of the JNK and p38 MAPK pathways. Our results demonstrate the feasibility in enhancing the efficacy of currently used drugs to selectively kill cancer cells using peptides derived from pro-apoptotic caspase substrate fragments.


Journal of Biological Chemistry | 2005

Expression of an Uncleavable N-terminal RasGAP Fragment in Insulin-secreting Cells Increases Their Resistance toward Apoptotic Stimuli without Affecting Their Glucose-induced Insulin Secretion

Jiang-Yan Yang; Joël Walicki; Amar Abderrahmani; Marion Cornu; Gérard Waeber; Bernard Thorens; Christian Widmann

Apoptosis of pancreatic β cells is implicated in the onset of type 1 and type 2 diabetes. Consequently, strategies aimed at increasing the resistance of β cells toward apoptosis could be beneficial in the treatment of diabetes. RasGAP, a regulator of Ras and Rho GTPases, is an atypical caspase substrate, since it inhibits, rather than favors, apoptosis when it is partially cleaved by caspase-3 at position 455. The antiapoptotic signal generated by the partial processing of RasGAP is mediated by the N-terminal fragment (fragment N) in a Ras-phosphatidylinositol 3-kinase-Akt-dependent, but NF-κB-independent, manner. Further cleavage of fragment N at position 157 abrogates its antiapoptotic properties. Here we demonstrate that an uncleavable form of fragment N activates Akt, represses NF-κB activity, and protects the conditionally immortalized pancreatic insulinoma βTC-tet cell line against various insults, including exposure to genotoxins, trophic support withdrawal, and incubation with inflammatory cytokines. Fragment N also induced Akt activity and protection against cytokine-induced apoptosis in primary pancreatic islet cells. Fragment N did not alter insulin cell content and insulin secretion in response to glucose. These data indicate that fragment N protects β cells without affecting their function. The pathways regulated by fragment N are therefore promising targets for antidiabetogenic therapy.


Molecular and Cellular Endocrinology | 2009

Role of the transcriptional factor C/EBPβ in free fatty acid-elicited β-cell failure

Valérie Plaisance; Véronique Perret; Dimitri Favre; Amar Abderrahmani; Jiang-Yan Yang; Christian Widmann; Romano Regazzi

Fatty acids can favour the development of Type 2 diabetes by reducing insulin secretion and inducing apoptosis of pancreatic beta-cells. Here, we show that sustained exposure of the beta-cell line MIN6 or of isolated pancreatic islets to the most abundant circulating fatty acid palmitate increases the level of C/EBPbeta, an insulin transcriptional repressor. In contrast, two unsaturated fatty acids, oleate and linoleate were without effect. The induction of C/EBPbeta elicited by palmitate was prevented by inhibiting the ERK1/2 MAP kinase pathway or by reducing mitochondrial fatty acid oxidation with an inhibitor of Carnitine Palmitoyl Transferase-1. Overexpression of C/EBPbeta mimicked the detrimental effects of palmitate and resulted in a drastic reduction in insulin promoter activity, impairment in the capacity to respond to secretory stimuli and an increase in apoptosis. Our data suggest a potential involvement of C/EBPbeta as mediator of the deleterious effects of unsaturated free fatty acids on beta-cell function.

Collaboration


Dive into the Jiang-Yan Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge