Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianhu Shen is active.

Publication


Featured researches published by Jianhu Shen.


Journal of The Mechanical Behavior of Biomedical Materials | 2012

Mechanical properties of luffa sponge

Jianhu Shen; Yi Min Xie; Xiaodong Huang; Shiwei Zhou; Dong Ruan

The paper presents the first scientific study of the stiffness, strength and energy absorption characteristics of the luffa sponge with a view to using it as an alternative sustainable engineering material for various practical applications. A series of compression tests on luffa sponge columns have been carried out. The stress-strain curves show a near constant plateau stress over a long strain range, which is ideal for energy absorption applications. It is found that the luffa sponge material exhibits remarkable stiffness, strength and energy absorption capacities that are comparable to those of some metallic cellular materials in a similar density range. Empirical formulae have been developed for stiffness, strength, densification strain and specific energy absorption at the macroscopic level. A comparative study shows that the luffa sponge material outperforms a variety of traditional engineering materials.


Smart Materials and Structures | 2015

Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties

Xin Ren; Jianhu Shen; Arash Ghaedizadeh; Hongqi Tian; Yi Min Xie

Auxetic metamaterials are synthetic materials with microstructures engineered to achieve negative Poissons ratios. Auxetic metamaterials are of great interest because of their unusual properties and various potential applications. However, most of the previous research has been focused on auxetic behaviour of elastomers under elastic deformation. Inspired by our recent finding of the loss of auxetic behaviour in metallic auxetic metamaterials, a systematic experimental and numerical investigation has been carried out to explore the mechanism behind this phenomenon. Using an improved methodology of generating buckling-induced auxetic metamaterials, several samples of metallic auxetic metamaterials have been fabricated using a 3D printing technique. The experiments on those samples have revealed the special features of auxetic behaviour for metallic auxetic metamaterials and proved the effectiveness of our structural modification. Parametric studies have been performed through experimentally validated finite element models to explore the auxetic performance of the designed metallic metamaterials. It is found that the auxetic performance can be tuned by the geometry of microstructures, and the strength and stiffness can be tuned by the plasticity of the base material while maintaining the auxetic performance.


Materials | 2016

Tuning the Performance of Metallic Auxetic Metamaterials by Using Buckling and Plasticity

Arash Ghaedizadeh; Jianhu Shen; Xin Ren; Yi Xie

Metallic auxetic metamaterials are of great potential to be used in many applications because of their superior mechanical performance to elastomer-based auxetic materials. Due to the limited knowledge on this new type of materials under large plastic deformation, the implementation of such materials in practical applications remains elusive. In contrast to the elastomer-based metamaterials, metallic ones possess new features as a result of the nonlinear deformation of their metallic microstructures under large deformation. The loss of auxetic behavior in metallic metamaterials led us to carry out a numerical and experimental study to investigate the mechanism of the observed phenomenon. A general approach was proposed to tune the performance of auxetic metallic metamaterials undergoing large plastic deformation using buckling behavior and the plasticity of base material. Both experiments and finite element simulations were used to verify the effectiveness of the developed approach. By employing this approach, a 2D auxetic metamaterial was derived from a regular square lattice. Then, by altering the initial geometry of microstructure with the desired buckling pattern, the metallic metamaterials exhibit auxetic behavior with tuneable mechanical properties. A systematic parametric study using the validated finite element models was conducted to reveal the novel features of metallic auxetic metamaterials undergoing large plastic deformation. The results of this study provide a useful guideline for the design of 2D metallic auxetic metamaterials for various applications.


Smart Materials and Structures | 2016

A simple auxetic tubular structure with tuneable mechanical properties

Xin Ren; Jianhu Shen; Arash Ghaedizadeh; Hongqi Tian; Yi Min Xie

Auxetic materials and structures are increasingly used in various fields because of their unusual properties. Auxetic tubular structures have been fabricated and studied due to their potential to be adopted as oesophageal stents where only tensile auxetic performance is required. However, studies on compressive mechanical properties of auxetic tubular structures are limited in the current literature. In this paper, we developed a simple tubular structure which exhibits auxetic behaviour in both compression and tension. This was achieved by extending a design concept recently proposed by the authors for generating 3D metallic auxetic metamaterials. Both compressive and tensile mechanical properties of the auxetic tubular structure were investigated. It was found that the methodology for generating 3D auxetic metamaterials could be effectively used to create auxetic tubular structures as well. By properly adjusting certain parameters, the mechanical properties of the designed auxetic tubular structure could be easily tuned.


Journal of The Mechanical Behavior of Biomedical Materials | 2014

Water-responsive rapid recovery of natural cellular material

Jianhu Shen; Yi Min Xie; Shiwei Zhou; Xiaodong Huang; Dong Ruan

Insight into the stimuli-responsive behaviour of biological materials with hierarchical microstructures is essential for designing new sustainable materials and structures. Shape memory, self-healing and self-repairing will become valuable characteristics of advanced materials. Here we report the water-triggered shape recovery of a natural biological material, the luffa sponge. The longitudinally crushed luffa sponge column can recover up to 98% of its original shape after it is immersed in water. The mechanical properties of the luffa sponge can also be recovered, to a large extent, after a subsequent drying process. The effects of strain rate, crushing strains, loading cycles, and temperature/duration of water treatment of the drying process on the shape recovery ratio and the energy dissipation recovery ratio have been investigated. The results from this study have demonstrated that the luffa sponge material possesses remarkable shape memory effects and mechanical recovery features which could be exploited or biomimicked for the design of water-responsive smart materials undergoing large deformations.


Key Engineering Materials | 2013

Compressive Behavior of Luffa Sponge Material at High Strain Rate

Jianhu Shen; Yi Min Xie; Xiao Dong Huang; Shi Wei Zhou; Dong Ruan

The strain rate effect of luffa sponge material is an indispensable property for it to be used for acoustic, vibration, and impact energy absorption. Compressive tests at different strain rates on cylindrical column specimens of luffa sponge material were conducted over a wide density ranging from 24 to 64 kg/m3. A photographic technique was applied to measure the section area of the specimen with irregular shape. The mechanical properties of luffa sponge material at various strain rates were obtained based on this measurement. The dynamic data were compared to those of quasi-static experiments. It was found that compressive strength, plateau stress and specific energy absorption of luffa sponge material were sensitive to the rate of loading. Empirical formulae were developed for strength, densification strain and specific energy absorption at various strain rates in the macroscopic level by considering the luffa fiber as base material.


Applied Mechanics and Materials | 2016

Numerical Simulations of 3D Metallic Auxetic Metamaterials in both Compression and Tension

Xin Ren; Jianhu Shen; Arash Ghaedizadeh; Hong Qi Tian; Yi Min Xie

Auxetic materials exhibit uncommon behaviour, i.e. they will shrink (expand) laterally under compression (tension). This novel feature has attracted intense research interest. However, most of previous works focus on auxetic behaviour in either compression or tension. Most of the auxetic materials are not symmetric in tension and compression under large deformation. Studies on the auxetic performance of metamaterials both in compression and tension are important but rare. As an extension of our previous research on compressive auxetic performance of 3D metallic auxetic metamaterials, numerical simulations were carried out to investigate the auxetic and other mechanical properties of the 3D metallic auxetic metamaterials in tension. The preliminary results indicated that the designed 3D metallic auxetic metamaterials exhibited better auxetic performance in compression than in tension. By increasing a pattern scale factor, auxetic performance of the 3D metallic auxetic metamaterials under tension can be improved. With proper adjustment of the pattern scale factor, an approximately symmetric auxetic performance could be achieved in compression and tension.


International Journal of Protective Structures | 2015

Inertia Effect on Buckling-Induced Auxetic Metamaterials

Jianhu Shen; Shiwei Zhou; Xiaodong Huang; Dong Ruan; Yi Min Xie

Auxetic metamaterials have enhanced indentation and penetration resistance due to their high shear strength and modulus. Its auxetic performance under dynamic loading cases is an important property for shields and armour applications. In the present study, compressive tests at different impact velocities on buckling-induced auxetic metamaterials were conducted for two different initial geometries. A photographic technique was applied to measure the Poissons ratio. When the dynamic data were compared with those of quasi-static experiments, it was found that the negative Poissons ratio for the buckling-induced metamaterial is sensitive to the rate of loading, while the negative Poissons ratio for the metamaterial with initial auxetic behaviour is insensitive to the loading rate. It was also found that the deformation pattern is similar to that in the quasi-static loading condition when the impact force measured by the test machine is dominated by the inertia force of the metamaterials.


Scientific Reports | 2017

Design of hierarchical structures for synchronized deformations

Hamed Seifi; Anooshe Rezaee Javan; Arash Ghaedizadeh; Jianhu Shen; Shanqing Xu; Yi Min Xie

In this paper we propose a general method for creating a new type of hierarchical structures at any level in both 2D and 3D. A simple rule based on a rotate-and-mirror procedure is introduced to achieve multi-level hierarchies. These new hierarchical structures have remarkably few degrees of freedom compared to existing designs by other methods. More importantly, these structures exhibit synchronized motions during opening or closure, resulting in uniform and easily-controllable deformations. Furthermore, a simple analytical formula is found which can be used to avoid collision of units of the structure during the closing process. The novel design concept is verified by mathematical analyses, computational simulations and physical experiments.


Applied Mechanics and Materials | 2012

Luffa Sponge as a Sustainable Engineering Material

Jianhu Shen; Yi Min Xie; Xiao Dong Huang; Shi Wei Zhou; Dong Ruan

The paper presents the first scientific study of the stiffness, strength and energy absorption characteristics of the luffa sponge with a view to using it as an alternative sustainable engineering material for various practical applications. A series of compression tests on luffa sponge columns have been carried out. The stress-strain curves show a near constant plateau stress over a long strain range, which is ideal for energy absorption applications. It is found that the luffa sponge material exhibits remarkable stiffness, strength and energy absorption capacity that are comparable to those of some commonly-used metallic cellular materials. These properties are due to its light-weight base material, and its structural hierarchy at several length scales. Empirical formulae have been developed for stiffness, strength, densification strain and specific energy absorption at the macroscopic level by considering the luffa fiber as the base material. A comparative study shows that the luffa sponge material outperforms a variety of traditional engineering materials.

Collaboration


Dive into the Jianhu Shen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Ruan

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge