Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shi Wei Zhou is active.

Publication


Featured researches published by Shi Wei Zhou.


Advanced Materials Research | 2010

Residual Stresses in Fabrication of Core-Veneered Ceramic Prostheses

Zhong Pu Zhang; Shi Wei Zhou; Qing Li; Wei Li; Michael V. Swain

Fabrication of multilayered ceramics signifies an important topic in many advanced applications aerospace and prosthetic dentistry. This paper presents a numerical approach to characterising the transient thermal responses and corresponding thermal residual stresses that are developed in the bi-layered dental ceramic crowns model under a controlled cooling rate from a temperature around its glass transition temperature (typically 550°C) to room temperature (25°C). Finite element method (FEM) is adopted to model the residual stresses in normal or rapid cooling fabrication process. The demonstrative examples take into account the effect of thickness in core veneered all-ceramic restorative prosthesis (specific porcelain bonded to an alumina or zirconia core layer), cooling rates and mismatches in temperature-dependent material properties such as thermal expansion coefficients, specific heat and Young’s modulus. The model of transient ceramic fabrication processing showed significant potential to development of optimal prosthetic devices.


Advanced Materials Research | 2011

Computer-Aided Design and Fabrication of Bio-Mimetic Materials and Scaffold Micro-Structures

Yuhang Chen; Joseph Cadman; Shi Wei Zhou; Qing Li

Computer-aided design (CAD) has proven effective in enabling novel approaches for tissue engineering applications. This paper demonstrates the applicability of various mathematical methods to design and fabricate bio-mimetic materials via two illustrative examples. Firstly, CAD models of cellular biomaterials that mimic the micro-structure of cuttlefish bone are designed based on the principles of the homogenization method. Secondly, a three-dimensional bi-objective topology optimization approach based upon the inverse homogenization method is used to design scaffold micro-structures with tailored effective stiffness and permeability properties. Consequently, solid free-form fabrication is used to fabricate such cellular bio-mimetic materials, which show a great potential in tissue engineering applications.


Advanced Materials Research | 2011

Computational Fracture Modelling in Bioceramic Structures

Wei Li; Chaiy Rungsiyakull; Zhong Pu Zhang; Shi Wei Zhou; Michael V. Swain; Ionut Ichim; Qing Li

Bioceramics have rapidly emerged as one of major biomaterials in modern biomedical applications because of its outstanding biocompatibility. However, one drawback is its low tensile strength and fracture toughness due to brittleness and inherent microstructural defects, which to a certain extent prevents the ceramics from fully replacing metals used as load-bearing prostheses. This paper aims to model the crack initiation and propagation in ceramic fixed partial denture, namely dental bridge, by using two recently developed methods namely continuum-to-discrete element method (CDEM) in ELFEN and extended finite element methods (XFEM) in ABAQUS. Unlike most existing studies that typically required prescriptions of initial cracks, these two new approaches will model crack initiation and propagation automatically. They are applied to a typical prosthodontic example, thereby demonstrating their applicability and effectiveness in biomedical applications.


Key Engineering Materials | 2013

Compressive Behavior of Luffa Sponge Material at High Strain Rate

Jianhu Shen; Yi Min Xie; Xiao Dong Huang; Shi Wei Zhou; Dong Ruan

The strain rate effect of luffa sponge material is an indispensable property for it to be used for acoustic, vibration, and impact energy absorption. Compressive tests at different strain rates on cylindrical column specimens of luffa sponge material were conducted over a wide density ranging from 24 to 64 kg/m3. A photographic technique was applied to measure the section area of the specimen with irregular shape. The mechanical properties of luffa sponge material at various strain rates were obtained based on this measurement. The dynamic data were compared to those of quasi-static experiments. It was found that compressive strength, plateau stress and specific energy absorption of luffa sponge material were sensitive to the rate of loading. Empirical formulae were developed for strength, densification strain and specific energy absorption at various strain rates in the macroscopic level by considering the luffa fiber as base material.


Key Engineering Materials | 2013

Bi-Directional Evolutionary Structural Optimization for Design of Compliant Mechanisms

Yan Li; Xiao Dong Huang; Yi Min Xie; Shi Wei Zhou

This research presents a topology optimization approach based on Bi-directional Evolutionary Structural Optimization (BESO) for optimal design of compliant mechanisms. Due to the complexity of the design for various compliant mechanisms, a new multi-objective optimization model is established by considering the mechanism flexibility and structural stiffness simultaneously. The sensitivity analysis is performed by applying the adjoint sensitivity approach to both the kinematical function and the structural function. The sensitivity numbers are derived according to the variation of the objective function with respect to the design variables. Some numerical examples are given to demonstrate the effectiveness of the proposed method for the design of various compliant mechanisms.


Materials Science Forum | 2010

Creating Biomaterials Inspired by the Microstructure of Cuttlebone

Joseph Cadman; Yuhang Chen; Shi Wei Zhou; Qing Li

The microstructure of cuttlebone is investigated using Scanning Electron Microscopy (SEM). A graded aspect ratio of the base cells between layers is evident in some samples. A method for designing graded biomaterials mimicking this cuttlebone microstructure is developed. Simplified 3D biomaterial samples are created using CAD software. These biomaterials are fabricated using a stereolithographic apparatus (SLA). The homogenisation technique is used to evaluate the mechanical properties of the original cuttlebone sample and the fabricated biomaterial sample. Good agreement is found between the Young’s moduli of corresponding layers. However, it is inconclusive whether the Young’s moduli have a proportional relationship to the aspect ratio of the base cell at this stage of the study.


Advanced Materials Research | 2008

Design of Periodic Microstructural Materials by Using Evolutionary Structural Optimization Method

Sachin Patil; Shi Wei Zhou; Qing Li

Despite significant success in developing various periodic composites, the challenge remains how to more efficiently design the base cell so that one or more physical properties can be attained. In this paper, the material design problem is formulated in a form of the least square of the difference between the targeted and designed values. By minimizing the objective subject to volume constraints and periodic boundary conditions, an optimal material distribution in base cell can be generated. Different from existing methods, this paper shows how to use the Evolutionary Structural Optimization (ESO) method to design composite material attaining to thermal conductivity defined by the Hashin-Strikman (H-S) bounds. The effectiveness of this method is demonstrated through several 2D examples, agreeing well with commonly known benchmarking microstructures.


Advanced Materials Research | 2010

Assessing the effects of natural variations in microstructure for the biomimetic modeling of cuttlebone

Joseph Cadman; Yuhang Chen; Shi Wei Zhou; Qing Li

Cuttlebone is a natural material possessing a unique microstructure providing a high compressive strength to weight ratio. It is potentially desirable to use cuttlebone directly in engineering applications or to design new biomimetic materials based on the microstructural features of cuttlebone. A finite element based homogenization method can be used for characterizing the mechanical properties of such a biomaterial and for the design of biomimetic materials. However, this method assumes a periodicity of microstructure, which does not reflect the variation present in natural or fabricated materials. The method can be extended to investigate the effect of natural variation and manufacturing tolerance by enlarging the base cell domain to include a number of representative volume elements (RVEs) and applying a random displacement vector to the nodes at the internal intersections of the RVEs. As the boundary of the base cell domain is not modified, the homogenization method can still be employed to calculate the bulk mechanical properties. It is found that the number of RVEs in the base cell has an impact on the decrease in mean stiffness tensor components, while the length of the introduced variation seems to influence both the mean and the standard deviation of stiffness tensor components.


Applied Mechanics and Materials | 2012

Luffa Sponge as a Sustainable Engineering Material

Jianhu Shen; Yi Min Xie; Xiao Dong Huang; Shi Wei Zhou; Dong Ruan

The paper presents the first scientific study of the stiffness, strength and energy absorption characteristics of the luffa sponge with a view to using it as an alternative sustainable engineering material for various practical applications. A series of compression tests on luffa sponge columns have been carried out. The stress-strain curves show a near constant plateau stress over a long strain range, which is ideal for energy absorption applications. It is found that the luffa sponge material exhibits remarkable stiffness, strength and energy absorption capacity that are comparable to those of some commonly-used metallic cellular materials. These properties are due to its light-weight base material, and its structural hierarchy at several length scales. Empirical formulae have been developed for stiffness, strength, densification strain and specific energy absorption at the macroscopic level by considering the luffa fiber as the base material. A comparative study shows that the luffa sponge material outperforms a variety of traditional engineering materials.


Advanced Materials Research | 2008

The Design of Functional Gradient Materials with Inverse Homogenization Method

Shi Wei Zhou; Qing Li

This study systemically presents an inverse homogenization method in the design of functional gradient materials, which gained substantial attention recently due to their layer-by-layer defined physical properties. Each layer of these materials is unilaterally constructed by periodically extended microstructural elements (namely base cells), whose effective properties can be decided by the homogenization theory in accordance with the material distribution within the base cell. The design objective is to minimize the summation of the least squares of the difference between corresponded entries in target and effective elasticity tensors. The method of moving asymptote drives the minimization of this positive objective function, which forces the effective values approach to the targets as closely as possible. The sensitivity of the effective elasticity tensors with respect to the design variables is derived from the adjoint variable method and it guides the minimization algorithm efficiently. To guarantee the connectivity between adjacent layers, non-design domains occupied by solid materials acting as connective bars are fixed in the design of base cells. Furthermore, nonlinear diffusion technique is introduced to avoid checkerboard patterns and blur boundaries in the microstructures. A series of two-dimensional examples targeted for the elasticity tensors with same extreme Poisson ratios but different densities in each layer are illustrated to highlight the computational material design procedure.

Collaboration


Dive into the Shi Wei Zhou's collaboration.

Top Co-Authors

Avatar

Qing Li

University of Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuhang Chen

Heriot-Watt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Ruan

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge