Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianing Li is active.

Publication


Featured researches published by Jianing Li.


Proteins | 2011

The VSGB 2.0 Model: A Next Generation Energy Model for High Resolution Protein Structure Modeling

Jianing Li; Robert Abel; Kai Zhu; Yixiang Cao; Suwen Zhao

A novel energy model (VSGB 2.0) for high resolution protein structure modeling is described, which features an optimized implicit solvent model as well as physics‐based corrections for hydrogen bonding, π–π interactions, self‐contact interactions, and hydrophobic interactions. Parameters of the VSGB 2.0 model were fit to a crystallographic database of 2239 single side chain and 100 11–13 residue loop predictions. Combined with an advanced method of sampling and a robust algorithm for protonation state assignment, the VSGB 2.0 model was validated by predicting 115 super long loops up to 20 residues. Despite the dramatically increasing difficulty in reconstructing longer loops, a high accuracy was achieved: all of the lowest energy conformations have global backbone RMSDs better than 2.0 Å from the native conformations. Average global backbone RMSDs of the predictions are 0.51, 0.63, 0.70, 0.62, 0.80, 1.41, and 1.59 Å for 14, 15, 16, 17, 18, 19, and 20 residue loop predictions, respectively. When these results are corrected for possible statistical bias as explained in the text, the average global backbone RMSDs are 0.61, 0.71, 0.86, 0.62, 1.06, 1.67, and 1.59 Å. Given the precision and robustness of the calculations, we believe that the VSGB 2.0 model is suitable to tackle “real” problems, such as biological function modeling and structure‐based drug discovery. Proteins 2011;


Journal of the American Chemical Society | 2013

Ligand-Dependent Activation and Deactivation of the Human Adenosine A2A Receptor

Jianing Li; Amanda L. Jonsson; Thijs Beuming; John C. Shelley; Gregory A. Voth

G-protein-coupled receptors (GPCRs) are membrane proteins with critical functions in cellular signal transduction, representing a primary class of drug targets. Acting by direct binding, many drugs modulate GPCR activity and influence the signaling pathways associated with numerous diseases. However, complete details of ligand-dependent GPCR activation/deactivation are difficult to obtain from experiments. Therefore, it remains unclear how ligands modulate a GPCRs activity. To elucidate the ligand-dependent activation/deactivation mechanism of the human adenosine A2A receptor (AA2AR), a member of the class A GPCRs, we performed large-scale unbiased molecular dynamics and metadynamics simulations of the receptor embedded in a membrane. At the atomic level, we have observed distinct structural states that resemble the active and inactive states. In particular, we noted key structural elements changing in a highly concerted fashion during the conformational transitions, including six conformational states of a tryptophan (Trp246(6.48)). Our findings agree with a previously proposed view that, during activation, this tryptophan residue undergoes a rotameric transition that may be coupled to a series of coherent conformational changes, resulting in the opening of the G-protein binding site. Further, metadynamics simulations provide quantitative evidence for this mechanism, suggesting how ligand binding shifts the equilibrium between the active and inactive states. Our analysis also proposes that a few specific residues are associated with agonism/antagonism, affinity, and selectivity, and suggests that the ligand-binding pocket can be thought of as having three distinct regions, providing dynamic features for structure-based design. Additional simulations with AA2AR bound to a novel ligand are consistent with our proposed mechanism. Generally, our study provides insights into the ligand-dependent AA2AR activation/deactivation in addition to what has been found in crystal structures. These results should aid in the discovery of more effective and selective GPCR ligands.


Angewandte Chemie | 2014

An Electrochemically and Thermally Switchable Donor–Acceptor [c2]Daisy Chain Rotaxane

Carson J. Bruns; Jianing Li; Marco Frasconi; Severin T. Schneebeli; Julien Iehl; Henri Pierre Jacquot De Rouville; Samuel I. Stupp; Gregory A. Voth; J. Fraser Stoddart

Although motor proteins are essential cellular components that carry out biological processes by converting chemical energy into mechanical motion, their functions have been difficult to mimic in artificial synthetic systems. Daisy chains are a class of rotaxanes which have been targeted to serve as artificial molecular machines because their mechanically interlocked architectures enable them to contract and expand linearly, in a manner that is reminiscent of the sarcomeres of muscle tissue. The scope of external stimuli that can be used to control the musclelike motions of daisy chains remains limited, however, because of the narrow range of supramolecular motifs that have been utilized in their templated synthesis. Reported herein is a cyclic daisy chain dimer based on π-associated donor-acceptor interactions, which can be actuated with either thermal or electrochemical stimuli. Molecular dynamics simulations have shown the daisy chains mechanism of extension/contraction in the ground state in atomistic detail.


The EMBO Journal | 2016

BH3-in-groove dimerization initiates and helix 9 dimerization expands Bax pore assembly in membranes

Zhi Zhang; Sabareesh Subramaniam; Justin Kale; Chenyi Liao; Bo Huang; Hetal Brahmbhatt; Samson G.F. Condon; Suzanne M. Lapolla; Franklin A. Hays; Jingzhen Ding; Feng He; Xuejun C. Zhang; Jianing Li; Alessandro Senes; David W. Andrews; Jialing Lin

Pro‐apoptotic Bax induces mitochondrial outer membrane permeabilization (MOMP) by forming oligomers through a largely undefined process. Using site‐specific disulfide crosslinking, compartment‐specific chemical labeling, and mutational analysis, we found that activated integral membrane Bax proteins form a BH3‐in‐groove dimer interface on the MOM surface similar to that observed in crystals. However, after the α5 helix was released into the MOM, the remaining interface with α2, α3, and α4 helices was rearranged. Another dimer interface was formed inside the MOM by two intersected or parallel α9 helices. Combinations of these interfaces generated oligomers in the MOM. Oligomerization was initiated by BH3‐in‐groove dimerization, without which neither the other dimerizations nor MOMP occurred. In contrast, α9 dimerization occurred downstream and was required for release of large but not small proteins from mitochondria. Moreover, the release of large proteins was facilitated by α9 insertion into the MOM and localization to the pore rim. Therefore, the BH3‐in‐groove dimerization on the MOM nucleates the assembly of an oligomeric Bax pore that is enlarged by α9 dimerization at the rim.


Proteins | 2011

Progress in Super Long Loop Prediction

Suwen Zhao; Kai Zhu; Jianing Li

Sampling errors are very common in super long loop (referring here to loops that have more than thirteen residues) prediction, simply because the sampling space is vast. We have developed a dipeptide segment sampling algorithm to solve this problem. As a first step in evaluating the performance of this algorithm, it was applied to the problem of reconstructing loops in native protein structures. With a newly constructed test set of 89 loops ranging from 14 to 17 residues, this method obtains average/median global backbone root‐mean‐square deviations (RMSDs) to the native structure (superimposing the body of the protein, not the loop itself) of 1.46/0.68 Å. Specifically, results for loops of various lengths are 1.19/0.67 Å for 36 fourteen‐residue loops, 1.55/0.75 Å for 30 fifteen‐residue loops, 1.43/0.80 Å for 14 sixteen‐residue loops, and 2.30/1.92 Å for nine seventeen‐residue loops. In the vast majority of cases, the method locates energy minima that are lower than or equal to that of the minimized native loop, thus indicating that the new sampling method is successful and rarely limits prediction accuracy. Median RMSDs are substantially lower than the averages because of a small number of outliers. The causes of these failures are examined in some detail, and some can be attributed to flaws in the energy function, such as π–π interactions are not accurately accounted for by the OPLS‐AA force field we employed in this study. By introducing a new energy model which has a superior description of π–π interactions, significantly better results were achieved for quite a few former outliers. Crystal packing is explicitly included in order to provide a fair comparison with crystal structures. Proteins 2011;.


Journal of the American Chemical Society | 2011

Insights into the different dioxygen activation pathways of methane and toluene monooxygenase hydroxylases

Arteum D. Bochevarov; Jianing Li; Woon Ju Song; Stephen J. Lippard

The methane and toluene monooxygenase hydroxylases (MMOH and TMOH, respectively) have almost identical active sites, yet the physical and chemical properties of their oxygenated intermediates, designated P*, H(peroxo), Q, and Q* in MMOH and ToMOH(peroxo) in a subclass of TMOH, ToMOH, are substantially different. We review and compare the structural differences in the vicinity of the active sites of these enzymes and discuss which changes could give rise to the different behavior of H(peroxo) and Q. In particular, analysis of multiple crystal structures reveals that T213 in MMOH and the analogous T201 in TMOH, located in the immediate vicinity of the active site, have different rotatory configurations. We study the rotational energy profiles of these threonine residues with the use of molecular mechanics (MM) and quantum mechanics/molecular mechanics (QM/MM) computational methods and put forward a hypothesis according to which T213 and T201 play an important role in the formation of different types of peroxodiiron(III) species in MMOH and ToMOH. The hypothesis is indirectly supported by the QM/MM calculations of the peroxodiiron(III) models of ToMOH and the theoretically computed Mössbauer spectra. It also helps explain the formation of two distinct peroxodiiron(III) species in the T201S mutant of ToMOH. Additionally, a role for the ToMOD regulatory protein, which is essential for intermediate formation and protein functioning in the ToMO system, is advanced. We find that the low quadrupole splitting parameter in the Mössbauer spectrum observed for a ToMOH(peroxo) intermediate can be explained by protonation of the peroxo moiety, possibly stabilized by the T201 residue. Finally, similarities between the oxygen activation mechanisms of the monooxygenases and cytochrome P450 are discussed.


Biochemistry | 2014

Single-molecule studies reveal a hidden key step in the activation mechanism of membrane-bound protein kinase C-α.

Brian P. Ziemba; Jianing Li; Kyle E. Landgraf; Jefferson D. Knight; Gregory A. Voth; Joseph J. Falke

Protein kinase C-α (PKCα) is a member of the conventional family of protein kinase C isoforms (cPKCs) that regulate diverse cellular signaling pathways, share a common activation mechanism, and are linked to multiple pathologies. The cPKC domain structure is modular, consisting of an N-terminal pseudosubstrate peptide, two inhibitory domains (C1A and C1B), a targeting domain (C2), and a kinase domain. Mature, cytoplasmic cPKCs are inactive until they are switched on by a multistep activation reaction that occurs largely on the plasma membrane surface. Often, this activation begins with a cytoplasmic Ca2+ signal that triggers C2 domain targeting to the plasma membrane where it binds phosphatidylserine (PS) and phosphatidylinositol 4,5-bisphosphate (PIP2). Subsequently, the appearance of the signaling lipid diacylglycerol (DAG) activates the membrane-bound enzyme by recruiting the inhibitory pseudosubstrate and one or both C1 domains away from the kinase domain. To further investigate this mechanism, this study has utilized single-molecule total internal reflection fluorescence microscopy (TIRFM) to quantitate the binding and lateral diffusion of full-length PKCα and fragments missing specific domain(s) on supported lipid bilayers. Lipid binding events, and events during which additional protein is inserted into the bilayer, were detected by their effects on the equilibrium bound particle density and the two-dimensional diffusion rate. In addition to the previously proposed activation steps, the findings reveal a major, undescribed, kinase-inactive intermediate. On bilayers containing PS or PS and PIP2, full-length PKCα first docks to the membrane via its C2 domain, and then its C1A domain embeds itself in the bilayer even before DAG appears. The resulting pre-DAG intermediate with membrane-bound C1A and C2 domains is the predominant state of PKCα while it awaits the DAG signal. The newly detected, membrane-embedded C1A domain of this pre-DAG intermediate confers multiple useful features, including enhanced membrane affinity and longer bound state lifetime. The findings also identify the key molecular step in kinase activation: because C1A is already membrane-embedded in the kinase off state, recruitment of C1B to the bilayer by DAG or phorbol ester is the key regulatory event that stabilizes the kinase on state. More broadly, this study illustrates the power of single-molecule methods in elucidating the activation mechanisms and hidden regulatory states of membrane-bound signaling proteins.


Journal of the American Chemical Society | 2014

Interactions of protein kinase C-α C1A and C1B domains with membranes: a combined computational and experimental study.

Jianing Li; Brian P. Ziemba; Joseph J. Falke; Gregory A. Voth

Protein kinase C-α (PKCα) has been studied widely as a paradigm for conventional PKCs, with two C1 domains (C1A and C1B) being important for the regulation and function of the kinase. However, it is challenging to explore these domains in membrane-bound environments with either simulations or experiments alone. In this work, we have combined modeling, simulations, and experiments to understand the molecular basis of the PKCα C1A and C1B domain interactions with membranes. Our atomistic simulations of the PKCα C1 domains reveal the dynamic interactions of the proteins with anionic lipids, as well as the conserved hydrogen bonds and the distinct nonpolar contacts formed with lipid activators. Corroborating evidence is obtained from additional simulations and experiments in terms of lipid binding and protein diffusion. Overall, our study, for the first time, explains with atomistic detail how the PKCα C1A and C1B domains interact differently with various lipids. On the molecular level, the information provided by our study helps to shed light on PKCα regulation and activation mechanism. The combined computational/experimental approach demonstrated in this work is anticipated to enable further studies to explore the roles of C1 domains in many signaling proteins and to better understand their molecular mechanisms in normal cellular function and disease development.


Angewandte Chemie | 2015

Regulating Molecular Recognition with C-Shaped Strips Attained by Chirality-Assisted Synthesis

Xiaoxi Liu; Zackariah J. Weinert; Mona Sharafi; Chenyi Liao; Jianing Li; Severin T. Schneebeli

Chirality-assisted synthesis (CAS) is a general approach to control the shapes of large molecular strips. CAS is based on enantiomerically pure building blocks that are designed to strictly couple in a single geometric orientation. Fully shape-persistent structures can thus be created, even in the form of linear chains. With CAS, selective recognition between large host and guest molecules can reliably be designed de novo. To demonstrate this concept, three C-shaped strips that can embrace a pillar[5]arene macrocycle were synthesized. The pillar[5]arene bound to the strips was a better host for electron-deficient guests than the free macrocycle. Experimental and computational evidence is provided for these unique cooperative interactions to illustrate how CAS could open the door towards the precise positioning of functional groups for regulated supramolecular recognition and catalysis.


Science | 2017

Even-denominator fractional quantum Hall states in bilayer graphene

Jianing Li; Cheng Tan; Shaowen Chen; Y. Zeng; T. Taniguchi; Kenji Watanabe; J. Hone; Cory Dean

Exotic states pop up in bilayer graphene Particles with exotic quantum statistics are expected to be able to support an especially appealing flavor of quantum computing (QC) called topological QC. A particular fractional quantum Hall state in the semiconductor GaAs has long been thought to possess excitations with these favorable properties, but proving so has turned out to be tricky. Working with bilayer graphene instead of GaAs, Li et al. found four states that appear to be consistent with the theoretical description of states with the required quantum statistics. The researchers were able to tune the properties of these states by applying an electric field, adding a valuable control knob. Science, this issue p. 648 Transport measurements in dual-gated bilayer graphene suggest that four fractional quantum Hall states may host exotic excitations. The distinct Landau level spectrum of bilayer graphene (BLG) is predicted to support a non-abelian even-denominator fractional quantum Hall (FQH) state similar to the 52 state first identified in GaAs. However, the nature of this state has remained difficult to characterize. Here, we report transport measurements of a robust sequence of even-denominator FQH in dual-gated BLG devices. Parallel field measurement confirms the spin-polarized nature of the ground state, which is consistent with the Pfaffian/anti-Pfaffian description. The sensitivity of the even-denominator states to both filling fraction and transverse displacement field provides new opportunities for tunability. Our results suggest that BLG is a platform in which topological ground states with possible non-abelian excitations can be manipulated and controlled.

Collaboration


Dive into the Jianing Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing-Xiang Guo

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Yao Fu

University of Science and Technology of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge