Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chenyi Liao is active.

Publication


Featured researches published by Chenyi Liao.


The EMBO Journal | 2016

BH3-in-groove dimerization initiates and helix 9 dimerization expands Bax pore assembly in membranes

Zhi Zhang; Sabareesh Subramaniam; Justin Kale; Chenyi Liao; Bo Huang; Hetal Brahmbhatt; Samson G.F. Condon; Suzanne M. Lapolla; Franklin A. Hays; Jingzhen Ding; Feng He; Xuejun C. Zhang; Jianing Li; Alessandro Senes; David W. Andrews; Jialing Lin

Pro‐apoptotic Bax induces mitochondrial outer membrane permeabilization (MOMP) by forming oligomers through a largely undefined process. Using site‐specific disulfide crosslinking, compartment‐specific chemical labeling, and mutational analysis, we found that activated integral membrane Bax proteins form a BH3‐in‐groove dimer interface on the MOM surface similar to that observed in crystals. However, after the α5 helix was released into the MOM, the remaining interface with α2, α3, and α4 helices was rearranged. Another dimer interface was formed inside the MOM by two intersected or parallel α9 helices. Combinations of these interfaces generated oligomers in the MOM. Oligomerization was initiated by BH3‐in‐groove dimerization, without which neither the other dimerizations nor MOMP occurred. In contrast, α9 dimerization occurred downstream and was required for release of large but not small proteins from mitochondria. Moreover, the release of large proteins was facilitated by α9 insertion into the MOM and localization to the pore rim. Therefore, the BH3‐in‐groove dimerization on the MOM nucleates the assembly of an oligomeric Bax pore that is enlarged by α9 dimerization at the rim.


Angewandte Chemie | 2015

Regulating Molecular Recognition with C-Shaped Strips Attained by Chirality-Assisted Synthesis

Xiaoxi Liu; Zackariah J. Weinert; Mona Sharafi; Chenyi Liao; Jianing Li; Severin T. Schneebeli

Chirality-assisted synthesis (CAS) is a general approach to control the shapes of large molecular strips. CAS is based on enantiomerically pure building blocks that are designed to strictly couple in a single geometric orientation. Fully shape-persistent structures can thus be created, even in the form of linear chains. With CAS, selective recognition between large host and guest molecules can reliably be designed de novo. To demonstrate this concept, three C-shaped strips that can embrace a pillar[5]arene macrocycle were synthesized. The pillar[5]arene bound to the strips was a better host for electron-deficient guests than the free macrocycle. Experimental and computational evidence is provided for these unique cooperative interactions to illustrate how CAS could open the door towards the precise positioning of functional groups for regulated supramolecular recognition and catalysis.


Scientific Reports | 2016

Conformational Heterogeneity of Bax Helix 9 Dimer for Apoptotic Pore Formation

Chenyi Liao; Zhi Zhang; Justin Kale; David W. Andrews; Jialing Lin; Jianing Li

Helix α9 of Bax protein can dimerize in the mitochondrial outer membrane (MOM) and lead to apoptotic pores. However, it remains unclear how different conformations of the dimer contribute to the pore formation on the molecular level. Thus we have investigated various conformational states of the α9 dimer in a MOM model — using computer simulations supplemented with site-specific mutagenesis and crosslinking of the α9 helices. Our data not only confirmed the critical membrane environment for the α9 stability and dimerization, but also revealed the distinct lipid-binding preference of the dimer in different conformational states. In our proposed pathway, a crucial iso-parallel dimer that mediates the conformational transition was discovered computationally and validated experimentally. The corroborating evidence from simulations and experiments suggests that, helix α9 assists Bax activation via the dimer heterogeneity and interactions with specific MOM lipids, which eventually facilitate proteolipidic pore formation in apoptosis regulation.


Journal of Physical Chemistry B | 2015

Melittin Aggregation in Aqueous Solutions: Insight from Molecular Dynamics Simulations

Chenyi Liao; Myvizhi Esai Selvan; Jun Zhao; Jonathan L. Slimovitch; Severin T. Schneebeli; Mee Shelley; John C. Shelley; Jianing Li

Melittin is a natural peptide that aggregates in aqueous solutions with paradigmatic monomer-to-tetramer and coil-to-helix transitions. Since little is known about the molecular mechanisms of melittin aggregation in solution, we simulated its self-aggregation process under various conditions. After confirming the stability of a melittin tetramer in solution, we observed—for the first time in atomistic detail—that four separated melittin monomers aggregate into a tetramer. Our simulated dependence of melittin aggregation on peptide concentration, temperature, and ionic strength is in good agreement with prior experiments. We propose that melittin mainly self-aggregates via a mechanism involving the sequential addition of monomers, which is supported by both qualitative and quantitative evidence obtained from unbiased and metadynamics simulations. Moreover, by combining computer simulations and a theory of the electrical double layer, we provide evidence to suggest why melittin aggregation in solution likely stops at the tetramer, rather than forming higher-order oligomers. Overall, our study not only explains prior experimental results at the molecular level but also provides quantitative mechanistic information that may guide the engineering of melittin for higher efficacy and safety.


Oncotarget | 2017

Targeting the apoptotic Mcl-1-PUMA interface with a dual-acting compound

Jiyuan Liu; Zhen Tian; Nan Zhou; Xueying Liu; Chenyi Liao; Beilei Lei; Jianing Li; Shengyong Zhang; Hui Chen

Despite intensive efforts in the search for small molecules with anti-cancer activity, it remains challenging to achieve both high effectiveness and safety, since many agents lack the selectivity to only act on cancer cells. The interface of two apoptotic proteins, myeloid cell leukemia-1 (Mcl-1) and p53 upregulated modulator of apoptosis (PUMA), has been recently affirmed as a target for treating cancers, as the disruption of Mcl-1-PUMA binding can reduce cancer cell survival and protect normal cells from apoptosis. However, therapeutic agents that target this interface are yet to be found. In this work, we combined pharmacophore modelling and biological tests to seek small molecules which target the Mcl-1-PUMA interface. For the first time, a small-molecule compound was identified. Its dual activity has been validated to reduce PUMA-dependent apoptosis while deactivating Mcl-1-mediated anti-apoptosis in cancer cells. Our results would provide a new avenue for the development of effective and safe anti-cancer agents.Despite intensive efforts in the search for small molecules with anti-cancer activity, it remains challenging to achieve both high effectiveness and safety, since many agents lack the selectivity to only act on cancer cells. The interface of two apoptotic proteins, myeloid cell leukemia-1 (Mcl-1) and p53 upregulated modulator of apoptosis (PUMA), has been recently affirmed as a target for treating cancers, as the disruption of Mcl-1-PUMA binding can reduce cancer cell survival and protect normal cells from apoptosis. However, therapeutic agents that target this interface are yet to be found. In this work, we combined pharmacophore modelling and biological tests to seek small molecules which target the Mcl-1-PUMA interface. For the first time, a small-molecule compound was identified. Its dual activity has been validated to reduce PUMA-dependent apoptosis while deactivating Mcl-1-mediated anti-apoptosis in cancer cells. Our results would provide a new avenue for the development of effective and safe anti-cancer agents.


Scientific Reports | 2017

Conformational Transitions of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor, a Human Class B GPCR

Chenyi Liao; Xiaochuan Zhao; Matthias Brewer; Victor May; Jianing Li

The G protein-coupled pituitary adenylate cyclase-activating polypeptide receptor (PAC1R) is a potential therapeutic target for endocrine, metabolic and stress-related disorders. However, many questions regarding the protein structure and dynamics of PAC1R remain largely unanswered. Using microsecond-long simulations, we examined the open and closed PAC1R conformations interconnected within an ensemble of transitional states. The open-to-closed transition can be initiated by “unzipping” the extracellular domain and the transmembrane domain, mediated by a unique segment within the β3-β4 loop. Transitions between different conformational states range between microseconds to milliseconds, which clearly implicate allosteric effects propagating from the extracellular face of the receptor to the intracellular G protein-binding site. Such allosteric dynamics provides structural and mechanistic insights for the activation and modulation of PAC1R and related class B receptors.


Journal of Molecular Neuroscience | 2018

PAC1 Receptors: Shapeshifters in Motion

Chenyi Liao; Victor May; Jianing Li

Shapeshifters, in common mythology, are entities that can undergo multiple physical transformations. As our understanding of G protein-coupled receptors (GPCRs) has accelerated and been refined over the last two decades, we now understand that GPCRs are not static proteins, but rather dynamic structures capable of moving from one posture to the next, and adopting unique functional characteristics at each transition. This model of GPCR dynamics underlies our current understanding of biased agonism—how different ligands to the same receptor can generate different intracellular signals—and constitutive receptor activity, or the level of unbound basal receptor signaling that can be attenuated by inverse agonists. From information derived from related class B receptors, we have recently modeled the structure and molecular dynamics of the full-length pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1)—selective PAC1 receptor (PAC1R, Adcyap1r1). The class B receptors are different from the class A GPCRs in part from the presence of a large extracellular domain (ECD); the transitions of the ECD along with the dynamics of the transmembrane domains (TMD or 7TM) of the PAC1R describes a series of open- and closed-state conformations that appear to identify the mechanisms for receptor activation. The PAC1R shapeshifts also have the ability of delineating the mechanisms and the design of reagents that may direct biased agonism (or antagonism) for potential therapeutics.


Journal of Chemical Theory and Computation | 2017

A New Mixed All-Atom/Coarse-Grained Model: Application to Melittin Aggregation in Aqueous Solution

Mee Shelley; Myvizhi Esai Selvan; Jun Zhao; Volodymyr Babin; Chenyi Liao; Jianing Li; John C. Shelley

We introduce a new mixed resolution, all-atom/coarse-grained approach (AACG), for modeling peptides in aqueous solution and apply it to characterizing the aggregation of melittin. All of the atoms in peptidic components are represented, while a single site is used for each water molecule. With the full flexibility of the peptide retained, our AACG method achieves speedups by a factor of 3–4 for CPU time reduction and another factor of roughly 7 for diffusion. An Ewald treatment permits the inclusion of long-range electrostatic interactions. These characteristics fit well with the requirements for studying peptide association and aggregation, where the system sizes and time scales require considerable computational resources with all-atom models. In particular, AACG is well suited for biologics since changes in peptide shape and long-range electrostatics may play an important role. The application of AACG to melittin, a 26-residue peptide with a well-known propensity to aggregate in solution, serves as an initial demonstration of this technology for studying peptide aggregation. We observed the formation of melittin aggregates during our simulations and characterized the time-evolution of aggregate size distribution, buried surface areas, and residue contacts. Key interactions including π-cation and π-stacking involving TRP19 were also examined. Our AACG simulations demonstrated a clear salt effect and a moderate temperature effect on aggregation and support the molten globule model of melittin aggregates. As a showcase, this work illustrates the useful role for AACG in investigations of peptide aggregation and its potential to guide formulation and design of biologics.


Nature Chemistry | 2017

DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns

Tuan Trinh; Chenyi Liao; Violeta Toader; Maciej Barłóg; Hassan S. Bazzi; Jianing Li; Hanadi F. Sleiman


Physical Chemistry Chemical Physics | 2017

Capturing the multiscale dynamics of membrane protein complexes with all-atom, mixed-resolution, and coarse-grained models

Chenyi Liao; Xiaochuan Zhao; Jiyuan Liu; Severin T. Schneebeli; John C. Shelley; Jianing Li

Collaboration


Dive into the Chenyi Liao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Andrews

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Jialing Lin

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge