Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiankun Cui is active.

Publication


Featured researches published by Jiankun Cui.


Nature | 2002

Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits

Jon E. Chatterton; Marc Awobuluyi; Louis S. Premkumar; Hiroto Takahashi; Maria Talantova; Yeonsook Shin; Jiankun Cui; Shichun Tu; Kevin A. Sevarino; Nobuki Nakanishi; Gang Tong; Stuart A. Lipton; Dongxian Zhang

The N-methyl-d-aspartate subtype of glutamate receptor (NMDAR) serves critical functions in physiological and pathological processes in the central nervous system, including neuronal development, plasticity and neurodegeneration. Conventional heteromeric NMDARs composed of NR1 and NR2A–D subunits require dual agonists, glutamate and glycine, for activation. They are also highly permeable to Ca2+, and exhibit voltage-dependent inhibition by Mg2+. Coexpression of NR3A with NR1 and NR2 subunits modulates NMDAR activity. Here we report the cloning and characterization of the final member of the NMDAR family, NR3B, which shares high sequence homology with NR3A. From in situ and immunocytochemical analyses, NR3B is expressed predominantly in motor neurons, whereas NR3A is more widely distributed. Remarkably, when co-expressed in Xenopus oocytes, NR3A or NR3B co-assembles with NR1 to form excitatory glycine receptors that are unaffected by glutamate or NMDA, and inhibited by d-serine, a co-activator of conventional NMDARs. Moreover, NR1/NR3A or -3B receptors form relatively Ca2+-impermeable cation channels that are resistant to Mg2+, MK-801, memantine and competitive antagonists. In cerebrocortical neurons containing NR3 family members, glycine triggers a burst of firing, and membrane patches manifest glycine-responsive single channels that are suppressible by d-serine. By itself, glycine is normally thought of as an inhibitory neurotransmitter. In contrast, these NR1/NR3A or -3B ‘NMDARs’ constitute a type of excitatory glycine receptor.


The EMBO Journal | 2006

Nitric oxide‐induced mitochondrial fission is regulated by dynamin‐related GTPases in neurons

Mark J Barsoum; Hua Yuan; Akos A Gerencser; Géraldine Liot; Yulia Kushnareva; Simone Gräber; Imre Kovacs; Wilson D Lee; Jenna Waggoner; Jiankun Cui; White Ad; Blaise Bossy; Jean-Claude Martinou; Richard J. Youle; Stuart A. Lipton; Mark H. Ellisman; Guy A. Perkins; Ella Bossy-Wetzel

Mitochondria are present as tubular organelles in neuronal projections. Here, we report that mitochondria undergo profound fission in response to nitric oxide (NO) in cortical neurons of primary cultures. Mitochondrial fission by NO occurs long before neurite injury and neuronal cell death. Furthermore, fission is accompanied by ultrastructural damage of mitochondria, autophagy, ATP decline and generation of free radicals. Fission is occasionally asymmetric and can be reversible. Strikingly, mitochondrial fission is also an early event in ischemic stroke in vivo. Mitofusin 1 (Mfn1) or dominant‐negative Dynamin related protein 1 (Drp1K38A) inhibits mitochondrial fission induced by NO, rotenone and Amyloid‐β peptide. Conversely, overexpression of Drp1 or Fis1 elicits fission and increases neuronal loss. Importantly, NO‐induced neuronal cell death was mitigated by Mfn1 and Drp1K38A. Thus, persistent mitochondrial fission may play a causal role in NO‐mediated neurotoxicity.


Journal of Neurochemistry | 2008

Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/ Nrf2 pathway via S-alkylation of targeted cysteines on Keap1

Takumi Satoh; Kunio Kosaka; Ken Itoh; Masayuki Yamamoto; Yosuke Shimojo; Chieko Kitajima; Jiankun Cui; Joshua Kamins; Shu-ichi Okamoto; Masanori Izumi; Takuji Shirasawa; Stuart A. Lipton

Electrophilic compounds are a newly recognized class of redox‐active neuroprotective compounds with electron deficient, electrophilic carbon centers that react with specific cysteine residues on targeted proteins via thiol (S‐)alkylation. Although plants produce a variety of physiologically active electrophilic compounds, the detailed mechanism of action of these compounds remains unknown. Catechol ring‐containing compounds have attracted attention because they become electrophilic quinones upon oxidation, although they are not themselves electrophilic. In this study, we focused on the neuroprotective effects of one such compound, carnosic acid (CA), found in the herb rosemary obtained from Rosmarinus officinalis. We found that CA activates the Keap1/Nrf2 transcriptional pathway by binding to specific Keap1 cysteine residues, thus protecting neurons from oxidative stress and excitotoxicity. In cerebrocortical cultures, CA‐biotin accumulates in non‐neuronal cells at low concentrations and in neurons at higher concentrations. We present evidence that both the neuronal and non‐neuronal distribution of CA may contribute to its neuroprotective effect. Furthermore, CA translocates into the brain, increases the level of reduced glutathione in vivo, and protects the brain against middle cerebral artery ischemia/reperfusion, suggesting that CA may represent a new type of neuroprotective electrophilic compound.


The Journal of Comparative Neurology | 2002

Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain

Hon Kit Wong; Xiao Bo Liu; Maria F. Matos; Shing Fai Chan; Isabel Pérez-Otaño; Megan Boysen; Jiankun Cui; Nobuki Nakanishi; James S. Trimmer; Edward G. Jones; Stuart A. Lipton; Nikolaus J. Sucher

NR3A is a developmentally regulated N‐methyl‐D‐aspartate receptor (NMDAR) subunit that was previously known as NMDAR‐L or χ‐1. Unlike other NMDAR subunits, NR3A inhibits the NMDAR‐associated ion channel in a novel manner, and a role in synaptogenesis has been suggested for this subunit. Here, we report a comprehensive study to delineate the temporal and anatomic expression of NR3A protein in the mammalian brain by using a monoclonal anti‐NR3A antibody. NR3A protein was found to peak at postnatal day (P) 8, and to decrease gradually from P12 to adulthood in the rat central nervous system. Moreover, NR3A protein was heavily expressed in all areas of the isocortex, portions of the amygdaloid nuclei, and selective cell layers and nuclei of the hippocampus, thalamus, hypothalamus, brainstem, and spinal cord. NR3A protein was also expressed in the cerebellar cortex, whereas only weak signal was detected in the previous in situ studies by using riboprobes. At an ultrastructural level, NR3A was associated specifically with asymmetrical synapses and localized to postsynaptic membranes. This information will facilitate future research on NMDARs by providing clues to possible inclusion of the NR3A subunit in NMDARs in many brain regions. J. Comp. Neurol. 450:303–317, 2002.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Dominant-interfering forms of MEF2 generated by caspase cleavage contribute to NMDA-induced neuronal apoptosis

Shu-ichi Okamoto; Zhen Li; Chung Ju; Marion N. Schölzke; Emily Mathews; Jiankun Cui; Guy S. Salvesen; Ella Bossy-Wetzel; Stuart A. Lipton

Myocyte enhancer factor-2 (MEF2) transcription factors are activated by p38 mitogen-activated protein kinase during neuronal and myogenic differentiation. Recent work has shown that stimulation of this pathway is antiapoptotic during development but proapoptotic in mature neurons exposed to excitotoxic or other stress. We now report that excitotoxic (N-methyl-D-aspartate) insults to mature cerebrocortical neurons activate caspase-3, -7, in turn cleaving MEF2A, C, and D isoforms. MEF2 cleavage fragments containing a truncated transactivation domain but preserved DNA-binding domain block MEF2 transcriptional activity via dominant interference. Transfection of constitutively active MEF2 (MEF2C-CA) rescues MEF2 transcriptional activity after N-methyl-D-aspartate insult and prevents neuronal apoptosis. Conversely, dominant-interfering MEF2 abrogates neuroprotection by MEF2C-CA. These results define a pathway to excitotoxic neuronal stress/apoptosis via caspase-catalyzed cleavage of MEF2. Additionally, we show that similar MEF2 cleavage fragments are generated in vivo during focal stroke damage. Hence, this pathway appears to have pathophysiological relevance in vivo.


The Journal of Neuroscience | 2009

Neuroprotection by the NR3A subunit of the NMDA receptor.

Nobuki Nakanishi; Shichun Tu; Yeonsook Shin; Jiankun Cui; Toru Kurokawa; Dongxian Zhang; H.-S. Vincent Chen; Gary Tong; Stuart A. Lipton

Hyperactivation of NMDA-type glutamate receptors (NMDARs) results in excitotoxicity, contributing to damage in stroke and neurodegenerative disorders. NMDARs are generally comprised of NR1/NR2 subunits but may contain modulatory NR3 subunits. Inclusion of NR3 subunits reduces the amplitude and dramatically decreases the Ca2+ permeability of NMDAR-associated channels in heterologous expression systems and in transgenic mice. Since excessive Ca2+ influx into neurons is a crucial step for excitotoxicity, we asked whether NR3A subunits are neuroprotective. To address this question, we subjected neurons genetically lacking NR3A to various forms of excitotoxic insult. We found that cultured neurons prepared from NR3A knock-out (KO) mice displayed greater sensitivity to damage by NMDA application than wild-type (WT) neurons. In vivo, neonatal, but not adult, WT mice contain NR3A in the cortex, and neonatal NR3A KO mice manifested more damage than WT after hypoxia–ischemia. In adult retina, one location where high levels of NR3A normally persist into adulthood, injection of NMDA into the eye killed more retinal ganglion cells in adult NR3A KO than WT mice. These data suggest that endogenous NR3A is neuroprotective. We next asked whether we could decrease excitotoxicity by overexpressing NR3A. We found that cultured neurons expressing transgenic (TG) NR3A displayed greater resistance to NMDA-mediated neurotoxicity than WT neurons. Similarly in vivo, adult NR3A TG mice subjected to focal cerebral ischemia manifested less damage than WT mice. These data suggest that endogenous NR3A protects neurons, and exogenously added NR3A increases neuroprotection and could be potentially exploited as a therapeutic.


Journal of Neuroinflammation | 2011

Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA2-IIA expression in astrocytes and microglia

Wenwen Sheng; Yijia Zong; Arwa Mohammad; Deepa Ajit; Jiankun Cui; Dongdong Han; Jennifer L Hamilton; Agnes Simonyi; Albert Y. Sun; Zezong Gu; Jau-Shyong Hong; Gary A. Weisman; Grace Y. Sun

BackgroundActivation of glial cells, including astrocytes and microglia, has been implicated in the inflammatory responses underlying brain injury and neurodegenerative diseases including Alzheimers and Parkinsons diseases. Although cultured astrocytes and microglia are capable of responding to pro-inflammatory cytokines and lipopolysaccharide (LPS) in the induction and release of inflammatory factors, no detailed analysis has been carried out to compare the induction of iNOS and sPLA2-IIA. In this study, we investigated the effects of cytokines (TNF-alpha, IL-1beta, and IFN-gamma) and LPS + IFN-gamma to induce temporal changes in cell morphology and induction of p-ERK1/2, iNOS and sPLA2-IIA expression in immortalized rat (HAPI) and mouse (BV-2) microglial cells, immortalized rat astrocytes (DITNC), and primary microglia and astrocytes.Methods/ResultsCytokines (TNF-alpha, IL-1beta, and IFN-gamma) and LPS + IFN-gamma induced a time-dependent increase in fine processes (filopodia) in microglial cells but not in astrocytes. Filopodia production was attributed to IFN-gamma and was dependent on ERK1/2 activation. Cytokines induced an early (15 min) and a delayed phase (1 ~ 4 h) increase in p-ERK1/2 expression in microglial cells, and the delayed phase increase corresponded to the increase in filopodia production. In general, microglial cells are more active in responding to cytokines and LPS than astrocytes in the induction of NO. Although IFN-gamma and LPS could individually induce NO, additive production was observed when IFN-gamma was added together with LPS. On the other hand, while TNF-alpha, IL-1beta, and LPS could individually induce sPLA2-IIA mRNA and protein expression, this induction process does not require IFN-gamma. Interestingly, neither rat immortalized nor primary microglial cells were capable of responding to cytokines and LPS in the induction of sPLA2-IIA expression.ConclusionThese results demonstrated the utility of BV-2 and HAPI cells as models for investigation on cytokine and LPS induction of iNOS, and DITNC astrocytes for induction of sPLA2-IIA. In addition, results further demonstrated that cytokine-induced sPLA2-IIA is attributed mainly to astrocytes and not microglial cells.


Asn Neuro | 2010

Prolonged exposure of cortical neurons to oligomeric amyloid-β impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (–)-epigallocatechin-3-gallate

Yan He; Jiankun Cui; Jimmy Lee; Shinghua Ding; Małgorzata Chalimoniuk; Agnes Simonyi; Albert Y. Sun; Zezong Gu; Gary A. Weisman; W. Gibson Wood; Grace Y. Sun

Excessive production of Aβ (amyloid β-peptide) has been shown to play an important role in the pathogenesis of AD (Alzheimers disease). Although not yet well understood, aggregation of Aβ is known to cause toxicity to neurons. Our recent study demonstrated the ability for oligomeric Aβ to stimulate the production of ROS (reactive oxygen species) in neurons through an NMDA (N-methyl-d-aspartate)-dependent pathway. However, whether prolonged exposure of neurons to aggregated Aβ is associated with impairment of NMDA receptor function has not been extensively investigated. In the present study, we show that prolonged exposure of primary cortical neurons to Aβ oligomers caused mitochondrial dysfunction, an attenuation of NMDA receptor-mediated Ca2+ influx and inhibition of NMDA-induced AA (arachidonic acid) release. Mitochondrial dysfunction and the decrease in NMDA receptor activity due to oligomeric Aβ are associated with an increase in ROS production. Gp91ds-tat, a specific peptide inhibitor of NADPH oxidase, and Mn(III)-tetrakis(4-benzoic acid)-porphyrin chloride, an ROS scavenger, effectively abrogated Aβ-induced ROS production. Furthermore, Aβ-induced mitochondrial dysfunction, impairment of NMDA Ca2+ influx and ROS production were prevented by pre-treatment of neurons with EGCG [(−)-epigallocatechin-3-gallate], a major polyphenolic component of green tea. Taken together, these results support a role for NADPH oxidase-mediated ROS production in the cytotoxic effects of Aβ, and demonstrate the therapeutic potential of EGCG and other dietary polyphenols in delaying onset or retarding the progression of AD.


PLOS ONE | 2013

Selective Inhibition of Matrix Metalloproteinase-9 Attenuates Secondary Damage Resulting from Severe Traumatic Brain Injury

Orr Hadass; Brittany N. Tomlinson; Major Gooyit; Shanyan Chen; Justin J. Purdy; Jennifer M. Walker; Chunyang Zhang; Andrew Giritharan; Whitley Purnell; Christopher R. Robinson; Dmitriy Shin; Valerie A. Schroeder; Mark A. Suckow; Agnes Simonyi; Grace Y. Sun; Shahriar Mobashery; Jiankun Cui; Mayland Chang; Zezong Gu

Traumatic brain injury (TBI) is a leading cause of death and long-term disability. Following the initial insult, severe TBI progresses to a secondary injury phase associated with biochemical and cellular changes. The secondary injury is thought to be responsible for the development of many of the neurological deficits observed after TBI and also provides a window of opportunity for therapeutic intervention. Matrix metalloproteinase-9 (MMP-9 or gelatinase B) expression is elevated in neurological diseases and its activation is an important factor in detrimental outcomes including excitotoxicity, mitochondrial dysfunction and apoptosis, and increases in inflammatory responses and astrogliosis. In this study, we used an experimental mouse model of TBI to examine the role of MMP-9 and the therapeutic potential of SB-3CT, a mechanism-based gelatinase selective inhibitor, in ameliorating the secondary injury. We observed that activation of MMP-9 occurred within one day following TBI, and remained elevated for 7 days after the initial insult. SB-3CT effectively attenuated MMP-9 activity, reduced brain lesion volumes and prevented neuronal loss and dendritic degeneration. Pharmacokinetic studies revealed that SB-3CT and its active metabolite, p-OH SB-3CT, were rapidly absorbed and distributed to the brain. Moreover, SB-3CT treatment mitigated microglial activation and astrogliosis after TBI. Importantly, SB-3CT treatment improved long-term neurobehavioral outcomes, including sensorimotor function, and hippocampus-associated spatial learning and memory. These results demonstrate that MMP-9 is a key target for therapy to attenuate secondary injury cascades and that this class of mechanism-based gelatinase inhibitor–with such desirable pharmacokinetic properties–holds considerable promise as a potential pharmacological treatment of TBI.


Journal of Proteome Research | 2014

Proteomic quantification and site-mapping of S-nitrosylated proteins using isobaric iodoTMT reagents.

Zhe Qu; Fanjun Meng; Ryan Bomgarden; Rosa Viner; Jilong Li; John C. Rogers; Jianlin Cheng; C. Michael Greenlief; Jiankun Cui; Dennis B. Lubahn; Grace Y. Sun; Zezong Gu

S-Nitrosylation is a redox-based protein post-translational modification in response to nitric oxide signaling and is involved in a wide range of biological processes. Detection and quantification of protein S-nitrosylation have been challenging tasks due to instability and low abundance of the modification. Many studies have used mass spectrometry (MS)-based methods with different thiol-reactive reagents to label and identify proteins with S-nitrosylated cysteine (SNO-Cys). In this study, we developed a novel iodoTMT switch assay (ISA) using an isobaric set of thiol-reactive iodoTMTsixplex reagents to specifically detect and quantify protein S-nitrosylation. Irreversible labeling of SNO-Cys with the iodoTMTsixplex reagents enables immune-affinity detection of S-nitrosylated proteins, enrichment of iodoTMT-labeled peptides by anti-TMT resin, and importantly, unambiguous modification site-mapping and multiplex quantification by liquid chromatography–tandem MS. Additionally, we significantly improved anti-TMT peptide enrichment efficiency by competitive elution. Using ISA, we identified a set of SNO-Cys sites responding to lipopolysaccharide (LPS) stimulation in murine BV-2 microglial cells and revealed effects of S-allyl cysteine from garlic on LPS-induced protein S-nitrosylation in antioxidative signaling and mitochondrial metabolic pathways. ISA proved to be an effective proteomic approach for quantitative analysis of S-nitrosylation in complex samples and will facilitate the elucidation of molecular mechanisms of nitrosative stress in disease.

Collaboration


Dive into the Jiankun Cui's collaboration.

Top Co-Authors

Avatar

Zezong Gu

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jimmy Lee

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge