Stuart A. Lipton
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stuart A. Lipton.
Neuron | 1995
Maria Ankarcrona; Jeannette M. Dypbukt; Emanuela Bonfoco; Boris Zhivotovsky; Sten Orrenius; Stuart A. Lipton; Pierluigi Nicotera
During ischemic brain injury, glutamate accumulation leads to overstimulation of postsynaptic glutamate receptors with intracellular Ca2+ overload and neuronal cell death. Here we show that glutamate can induce either early necrosis or delayed apoptosis in cultures of cerebellar granule cells. During and shortly after exposure to glutamate, a subpopulation of neurons died by necrosis. In these cells, mitochondrial membrane potential collapsed, nuclei swelled, and intracellular debris were scattered in the incubation medium. Neurons surviving the early necrotic phase recovered mitochondrial potential and energy levels. Later, they underwent apoptosis, as shown by the formation of apoptotic nuclei and by chromatin degradation into high and low molecular weight fragments. These results suggest that mitochondrial function is a critical factor that determines the mode of neuronal death in excitotoxicity.
Cell Death & Differentiation | 2012
Lorenzo Galluzzi; Ilio Vitale; John M. Abrams; Emad S. Alnemri; Eric H. Baehrecke; Mikhail V. Blagosklonny; Ted M. Dawson; Valina L. Dawson; Wafik S. El-Deiry; Simone Fulda; Eyal Gottlieb; Douglas R. Green; Michael O. Hengartner; Oliver Kepp; Richard A. Knight; Sharad Kumar; Stuart A. Lipton; Xin Lu; Frank Madeo; Walter Malorni; Patrick Mehlen; Gabriel Núñez; Marcus E. Peter; Mauro Piacentini; David C. Rubinsztein; Yufang Shi; Hans-Uwe Simon; Peter Vandenabeele; Eileen White; Junying Yuan
In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including ‘apoptosis’, ‘necrosis’ and ‘mitotic catastrophe’. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.
Nature | 2001
Marcus Kaul; Gwenn A. Garden; Stuart A. Lipton
Human immunodeficiency virus-1 (HIV-1) can induce dementia with alarming occurrence worldwide. The mechanism remains poorly understood, but discovery in brain of HIV-1-binding sites (chemokine receptors) provides new insights. HIV-1 infects macrophages and microglia, but not neurons, although neurons are injured and die by apoptosis. The predominant pathway to neuronal injury is indirect through release of macrophage, microglial and astrocyte toxins, although direct injury by viral proteins might also contribute. These toxins overstimulate neurons, resulting in the formation of free radicals and excitotoxicity, similar to other neurodegenerative diseases. Recent advances in understanding the signalling pathways mediating these events offer hope for therapeutic intervention.
Nature | 2001
Murat Digicaylioglu; Stuart A. Lipton
Erythropoietin, a kidney cytokine regulating haematopoiesis (the production of blood cells), is also produced in the brain after oxidative or nitrosative stress. The transcription factor hypoxia-inducible factor-1 (HIF-1) upregulates EPO following hypoxic stimuli. Here we show that preconditioning with EPO protects neurons in models of ischaemic and degenerative damage due to excitotoxins and consequent generation of free radicals, including nitric oxide (NO). Activation of neuronal EPO receptors (EPORs) prevents apoptosis induced by NMDA (N-methyl-d-aspartate) or NO by triggering cross-talk between the signalling pathways of Janus kinase-2 (Jak2) and nuclear factor-κB (NF-κB). We show that EPOR-mediated activation of Jak2 leads to phosphorylation of the inhibitor of NF-κB (IκB), subsequent nuclear translocation of the transcription factor NF-κB, and NF-κB-dependent transcription of neuroprotective genes. Transfection of cerebrocortical neurons with a dominant interfering form of Jak2 or an IκBα super-repressor blocks EPO-mediated prevention of neuronal apoptosis. Thus neuronal EPORs activate a neuroprotective pathway that is distinct from previously well characterized Jak and NF-κB functions. Moreover, this EPO effect may underlie neuroprotection mediated by hypoxic–ischaemic preconditioning.
Neuron | 1992
Sizheng Z. Lei; Zhuo Hua Pan; Sanjay K. Aggarwal; Huei Sheng Vincent Chen; Jonathan Hartman; Nikolaus J. Sucher; Stuart A. Lipton
Nitric oxide (NO) is an important messenger both systemically and in the CNS. In digital Ca2+ imaging and patch-clamp experiments, clinically available nitroso compounds that generate NO are shown to inhibit responses mediated by the NMDA subtype of the glutamate receptor on rat cortical neurons in vitro. A mechanism of action for this effect was investigated by using the specific NO-generating agent S-nitrosocysteine. We propose that free sulfhydryl groups on the NMDA receptor-channel complex react to form one or more S-nitrosothiols in the presence of NO. If vicinal thiol groups react in this manner, they can form a disulfide bond(s), which is thought to constitute the redox modulatory site of the receptor, resulting in a relatively persistent blockade of NMDA responses. These reactions with NO can afford protection from NMDA receptor-mediated neurotoxicity. Our results demonstrate a new pathway for NO regulation of physiological function that is not via cGMP, but instead involves reactions with membrane-bound thiol groups on the NMDA receptor-channel complex.
Trends in Neurosciences | 1989
Stuart A. Lipton; Stanley B. Kater
Molecules used for communication in mature nervous systems also play important roles in development, maintenance and plasticity of individual neurons. This paper reviews the evidence that neurotransmitters, in addition to their mediation of trans-synaptic information coding, can induce a spectrum of effects on neuronal cytoarchitecture, ranging from neurite sprouting to dendritic pruning and even cell death. Such profound alterations may well constitute a part of the normal functioning and structuring of the nervous system as well as contribute to severe pathological processes.
Science | 2009
Dong-Hyung Cho; Tomohiro Nakamura; Jianguo Fang; Piotr Cieplak; Adam Godzik; Zezong Gu; Stuart A. Lipton
Mitochondria continuously undergo two opposing processes, fission and fusion. The disruption of this dynamic equilibrium may herald cell injury or death and may contribute to developmental and neurodegenerative disorders. Nitric oxide functions as a signaling molecule, but in excess it mediates neuronal injury, in part via mitochondrial fission or fragmentation. However, the underlying mechanism for nitric oxide–induced pathological fission remains unclear. We found that nitric oxide produced in response to β-amyloid protein, thought to be a key mediator of Alzheimers disease, triggered mitochondrial fission, synaptic loss, and neuronal damage, in part via S-nitrosylation of dynamin-related protein 1 (forming SNO-Drp1). Preventing nitrosylation of Drp1 by cysteine mutation abrogated these neurotoxic events. SNO-Drp1 is increased in brains of human Alzheimers disease patients and may thus contribute to the pathogenesis of neurodegeneration.
Nature | 2006
Takashi Uehara; Tomohiro Nakamura; Dongdong Yao; Zhong Qing Shi; Zezong Gu; Yuliang Ma; Eliezer Masliah; Yasuyuki Nomura; Stuart A. Lipton
Stress proteins located in the cytosol or endoplasmic reticulum (ER) maintain cell homeostasis and afford tolerance to severe insults. In neurodegenerative diseases, several chaperones ameliorate the accumulation of misfolded proteins triggered by oxidative or nitrosative stress, or of mutated gene products. Although severe ER stress can induce apoptosis, the ER withstands relatively mild insults through the expression of stress proteins or chaperones such as glucose-regulated protein (GRP) and protein-disulphide isomerase (PDI), which assist in the maturation and transport of unfolded secretory proteins. PDI catalyses thiol–disulphide exchange, thus facilitating disulphide bond formation and rearrangement reactions. PDI has two domains that function as independent active sites with homology to the small, redox-active protein thioredoxin. During neurodegenerative disorders and cerebral ischaemia, the accumulation of immature and denatured proteins results in ER dysfunction, but the upregulation of PDI represents an adaptive response to protect neuronal cells. Here we show, in brains manifesting sporadic Parkinsons or Alzheimers disease, that PDI is S-nitrosylated, a reaction transferring a nitric oxide (NO) group to a critical cysteine thiol to affect protein function. NO-induced S-nitrosylation of PDI inhibits its enzymatic activity, leads to the accumulation of polyubiquitinated proteins, and activates the unfolded protein response. S-Nitrosylation also abrogates PDI-mediated attenuation of neuronal cell death triggered by ER stress, misfolded proteins or proteasome inhibition. Thus, PDI prevents neurotoxicity associated with ER stress and protein misfolding, but NO blocks this protective effect in neurodegenerative disorders through the S-nitrosylation of PDI.
Nature Reviews Drug Discovery | 2006
Stuart A. Lipton
Neuroprotective drugs tested in clinical trials, particularly those that block N-methyl-D-aspartate-sensitive glutamate receptors (NMDARs), have failed miserably in large part because of intolerable side effects. However, one such drug, memantine, was recently approved by the European Union and the US FDA for the treatment of dementia following our groups discovery of its clinically tolerated mechanism of action. Here, we review the molecular basis for memantine efficacy in neurological diseases that are mediated, at least in part, by overactivation of NMDARs, producing excessive Ca2+ influx through the receptors associated ion channel and consequent free-radical formation.
Neuron | 1997
Jonathan S. Stamler; Eric J. Toone; Stuart A. Lipton; Nikolaus J. Sucher
(Table 1; Stamler et al., 1992b). This is well exemplified Nitric oxide (NO) is a signaling molecule that has capin the immune system in work by DeGroote and Fang tured our imagination. According to the common view, (DeGroote et al., 1996). These researchers found that NO diffuses over a large sphere of influence, moving bacterial virulence is conferred by a gene that protects freely through membranes of target cells to raise levels against the lethal effects of SNOs produced by the (muof cGMP. In the brain, NO influences synaptic plasticity, rine) host, whereas NO is harmless against the same apoptosis, neuronal development, and even complex bacteria. Molecular recognition of the SNO onslaught behavioral responses. This image has been reinforced and the activation of bacterial resistance is achieved by by observations in the cardiovascular and immune sysS-nitrosylation of proteins involved in defense (Hauslatems, for example, the relaxation of blood vessels by den et al., 1996). Thus, in this system, S-nitrosylation is cGMP, and the killing of tumor cells and bacteria by the the signal and the regulator of the response. macrophage NO synthase (NOS). A similar NO signal is used by mammalian cells. Images can also be misleading. First, a wide sphere For example, the endothelium-derived relaxation factor of NO diffusion implies that it travelsdown concentration (EDRF)/NO-mediated relaxation of blood vessels occurs gradients that are established by extracellular sinks partly by direct activation of a potassium channel (Lancaster, 1994; Stamler, 1996). The problem with this through reactions of EDRF with critical thiols (Bolotina picture is that NO cannot achieve local action: it would et al., 1994). Likewise in the heart, SNO and peroxynitrite be leaving cells more rapidly than it reacts within. Sec(OONO) directly activate calcium channels by a redox ond, we have come to appreciate that many NO signals mechanism that opposes the effects of cGMP (Campbell are cGMP independent. These pathways, typically et al., 1996). Ion channel activation may also account grouped under the broad heading of “redox”, have not for NO/SNO-mediated relaxations of third to fourth order been incorporated into the theory of NO action in the human airways (Gaston et al., 1994) and canine (Koh et nervous system. However, redox-related NO signals can al., 1995) or rat proximal colon (Takeuchi et al., 1996);