Jianping Zhai
Nanjing University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jianping Zhai.
Journal of Hazardous Materials | 2010
Ya Zhang; Qin Li; Li Sun; Rong Tang; Jianping Zhai
A composite sorbent PANI/HA was prepared by adding humic acid (HA) into chemical oxidation process of polyaniline (PANI). The sorbent was characterized by BET analysis, transmission electron microscopy, and FT-IR spectra. Batch adsorption results showed that the sorbent had high affinity to Hg(II) in aqueous solutions. The adsorption kinetics results of Hg(II) showed that the adsorption reached equilibrium within 200 min and adsorption rates could be described by pseudo-second-order kinetics. Sorption of Hg(II) to PANI/HA agreed well to the Langmuir adsorption model at different ionic strengths with the maximum adsorption capacity of 671 mg g(-1) (I=0.20 M). The experimental results showed solution pH values had a major impact on Hg(II) adsorption and with the help of HA the sorbent can effectively remove Hg(II) in a wide pH range (pH 4-7.5). An adsorption mechanism was proposed based on the XPS results.
Water Research | 2011
Hao Cui; Qin Li; Yan Qian; Rong Tang; Hao An; Jianping Zhai
A polyaniline (PANI) modified electrode reactor was designed for fluoride removal from aqueous solutions. The innovative concept behind the reactor design is that the uptake and elute of fluoride could be well controlled by modulating the potential of the PANI film. The maximum fluoride removal capacity of PANI is more than 20 mg/g at a positive voltage based on the electrically controlled anion-exchange mechanism. The results of batch tests showed that terminal potential values had a major impact on fluoride removal by this PANI, with optimal removal occurring at 1.5 V. The fluoride removal capacity (q(e)) increased rapidly within 5 min and reached equilibrium within 10 min, which indicated a rapid removal velocity of fluoride by PANI under this condition. The applicability of defluoridation using the PANI reactor to treat fluoride-contaminated tap water was also tested through flow cell breakthrough studies. At initial fluoride concentrations of 5 mg/L and 10 mg/L, the breakthrough capacities were 20.08 mg/g and 19.24 mg/g, respectively. Moreover, during the first half of the period before the breakthrough point, the fluoride concentration of the treated solution was below the WHOs recommended levels (1.5 mg/L). The results of the five consecutive treatment-regeneration studies also showed that the PANI films could be reused. Taken together, these results implied that the electrically controlled anion exchange by the PANI-modified electrode reactor may be an effective technique for the removal of fluoride from water.
Journal of Hazardous Materials | 2010
Hui Xu; Qin Li; Lifeng Shen; Wei Wang; Jianping Zhai
Circulating fluidized bed combustion (CFBC) bottom ashes (CBAs) are a class of calcined aluminosilicate wastes with a unique thermal history. While landfill disposal of hazardous element-containing CBAs poses serious challenge, these wastes have long been neglected as source materials for geopolymer production. In this paper, geopolymerization of ground CBAs was investigated. Reactivity of the CBAs was analyzed by respective dissolution of the ashes in 2, 5, and 10N NaOH and KOH solutions. Geopolymer pastes were prepared by activating the CBAs by a series of alkalis hydroxides and/or sodium silicate solutions. Samples were cured at 40 degrees C for 168 h, giving a highest compressive strength of 52.9 MPa. Of the optimal specimen, characterization was conducted by TG-DTA, SEM, XRD, as well as FTIR analyses, and thermal stability was determined in terms of compressive strength evolution via exposure to 800 or 1050 degrees C followed by three cooling regimes, i.e. cooling in air, cooling in the furnace, and immerging in water. The results show that CBAs could serve as favorable source materials for thermostable geopolymers, which hold a promise to replace ordinary Portland cement (OPC) and organic polymers in a variety of applications, especially where fire hazards are of great concern.
Journal of Environmental Management | 2012
Qin Li; Xiaotian Xu; Hao Cui; Jianfeng Pang; Zhongbo Wei; Zengqing Sun; Jianping Zhai
Two adsorbents, magnesia-loaded fly ash cenospheres (MGLC) and manganese-loaded fly ash cenospheres (MNLC), were prepared by wet impregnation of fly ash cenospheres with MgCl(2) solution or a mixed solution of MnCl(2) and KMnO(4), respectively. Their physicochemical properties were characterized by scanning electron microscopy, X-ray diffractometry, X-ray fluorescence spectrometry, and Fourier transform infrared spectrometry. Sorption experiments were conducted to examine the effects of adsorbent dosage, pH, time, temperature, ionic strength and competing anions on As(V) removal by MGLC and MNLC. Both MGLC and MNLC had greater pH buffering capacity and were less affected by changes in ionic strength. Competing anions (carbonate and dihydric phosphate) had a larger impact on As(V) removal by MNLC than by MGLC. Adsorption on MNLC reached equilibrium at 60 min, while adsorption on MGLC reached equilibrium at 120 min. The Langmuir adsorption isotherm was a good fit for the experimental data of As(V) adsorption on MGLC and MNLC, and the adsorption kinetics for both followed the pseudo-second-order rate equation. MGLC and MNLC had a larger removal capacity for As(V) than the cenospheres. Compared with MNLC, MGLC is a better absorbent.
Waste Management | 2010
Hui Xu; Qin Li; Lifeng Shen; Mengqun Zhang; Jianping Zhai
In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.
Journal of Hazardous Materials | 2013
Qin Li; Zengqing Sun; Dejing Tao; Yan Xu; Peiming Li; Hao Cui; Jianping Zhai
The recent nuclear leak in Japan once again attracted peoples attention to nuclear safety problems. Because of their poor thermal stability, those low-cost materials such as cement and asphalt cannot be used for the solidification of the radioactive wastes. In this work, the solidification behavior of 133Cs(+) by fly ash-based geopolymer was investigated. Leaching tests (carried out in deionized water, sulfuric acid and magnesium sulfate solutions) revealed that the geopolymer solidification had lower cumulative fraction leaching concentration (CFLC) of 133Cs(+) than that of cemented form. The thermal stability (high-temperature and freeze-thaw resistance) and acid-resistance of the geopolymer were also both better than that of cement. The geopolymer solidification block can acquire a compressive strength up to 30 MPa after 2h calcination at 1000 °C. The morphology and mineral phases of the geopolymer and the geopolymer solidification block were characterized by SEM and XRD, and EDX analysis indicated that most of Cs associated with the amorphous geopolymer gel. These results gave encouragement for the idea that the fly ash-based geopolymer could be used as a low-cost and high-efficiency material for the immobilization of radioactive wastes.
Water Research | 2012
Hao Cui; Yan Qian; Hao An; Chencheng Sun; Jianping Zhai; Qin Li
A novel poly(aniline-co-o-aminophenol) (PAOA) modified carbon felt electrode reactor was designed and investigated for fluoride removal from aqueous solutions. This reactor design is innovative because it operates under a wider pH range because of coating with a copolymer PAOA ion exchange film. In addition, contaminant mass transfer from bulk solution to the electrode surface is enhanced by the porous carbon felt as an electron-conducting carrier material compared to other reactors. The electrically controlled anion exchange mechanism was investigated by X-ray photoelectron spectroscopy and cyclic voltammetry. The applicability of the reactor in the field was tested through a series of continuous flow experiments. When the flow rate and initial fluoride concentration were increased, the breakthrough curve became sharper, which lead to a decrease in the breakthrough time and the defluoridation capacity of the reactor. The terminal potential values largely influenced fluoride removal by the reactor and the optimal defluoridation efficiency was observed at around 1.2V. The breakthrough capacities were all >10mg/g over a wide pH range (pH 5-9) with an initial fluoride concentration of 10mg/L. Consecutive treatment-regeneration studies over a week (once each day) revealed that the PAOA-modified carbon felt electrode could be effectively regenerated for reuse. The PAOA-modified carbon felt electrode reactor is a promising system that could be made commercially available for fluoride removal from aqueous solutions in field applications.
Ecotoxicology and Environmental Safety | 2013
Xianchuan Xie; Yan Qian; Yingxin Wu; Jun Yin; Jianping Zhai
The effects of decabromodiphenyl ether (BDE-209) on avoidance response, survival, growth, and reproduction of earthworms (Eisenia fetida) were investigated under laboratory conditions using natural and artificial soils as substrate. Results showed that no significant avoidance response was observed when earthworms were exposed to 0.1-1000 mg/kg of BDE-209 for 48 h. After 28-days exposure, no significant effects on survival and growth of adult earthworms was induced by 0.1-1000 mg/kg of BDE-209 indicating the Lowest Observed Effect Level (LOEL) of BDE-209 on their survival and body weight was more than 1000 mg/kg. Except for a significant decrease in the number of juveniles per hatched cocoon in artificial soils at 1000 mg/kg of BDE-209, no significant effects on reproductive parameters (e.g. cocoon production per earthworms, weight per cocoon and cocoon hatchability) were observed. These results suggest that adult earthworms have a strong tolerance for BDE-209 exposure in soils, but a potential toxicity does exist for earthworm embryos or juveniles.
Environmental Technology | 2012
Chen Chen; Qin Li; Lifeng Shen; Jianping Zhai
This paper presents a study on geopolymer bricks manufactured using bottom ash from circulating fluidized bed combustion (CFBC). The alkali activators used for synthesis were sodium silicate, sodium hydroxide, and potassium hydroxide and lithium hydroxide solutions. The study included the impact of alkali activator on compressive strength. The reaction products were analysed by XRD, FT-IR and SEM/EDS. The compressive strength of bricks was dependent on the modulus of the sodium silicate activator and the type and concentration of alkali activator. The highest compressive strength could be gained when the modulus was 1.5, and the value could reach 16.1 MPa (7 d after manufacture) and 21.9 MPa (28 d after manufacture). Under pure alkaline systems, the compressive strength was in the order of 10 M KOH>10 M NaOH>5 M LiOH>5 M KOH>5 M NaOH. Quartz was the only crystalline phase in the original bottom ash, and no new crystalline phase was found after the reaction. The main product of reaction was amorphous alkali aluminosilicate gel and a small amount of crystalline phase was also found by SEM.
Journal of Physics D | 2009
Wei Wang; Qin Li; Ying Li; Hui Xu; Jianping Zhai
The electroless Ag coating of fly ash cenospheres employing polyaniline activator was investigated after polyaniline activator was coated on the surfaces of the cenosphere particles by in situ chemical polymerization. The composites were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, UV–visible absorption spectroscopy, x-ray diffraction and thermogravimetric analysis (TGA). The results indicate that a small amount of polyaniline activator was deposited in a discontinuous way on the surfaces of the cenosphere particles. Due to the activation of polyaniline, relatively compact and continuous Ag layer with a thickness of about 4 µm was obtained under the given electroless plating condition. The possible interaction between polyaniline and silver ions and the mechanism of Ag deposition were also investigated by the x-ray photoelectron spectroscopy technique.