Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianrun Xia is active.

Publication


Featured researches published by Jianrun Xia.


Nature Chemical Biology | 2011

Kinase inhibitors modulate huntingtin cell localization and toxicity.

Randy Singh Atwal; Carly R. Desmond; Nicholas Caron; Tamara Maiuri; Jianrun Xia; Simonetta Sipione; Ray Truant

Two serine residues within the first 17 amino acid residues of huntingtin (N17) are crucial for modulation of mutant huntingtin toxicity in cell and mouse genetic models of Huntingtons disease. Here we show that the stress-dependent phosphorylation of huntingtin at Ser13 and Ser16 affects N17 conformation and targets full-length huntingtin to chromatin-dependent subregions of the nucleus, the mitotic spindle and cleavage furrow during cell division. Polyglutamine-expanded mutant huntingtin is hypophosphorylated in N17 in both homozygous and heterozygous cell contexts. By high-content screening in live cells, we identified kinase inhibitors that modulated N17 phosphorylation and hence huntingtin subcellular localization. N17 phosphorylation was reduced by casein kinase-2 inhibitors. Paradoxically, IKKβ kinase inhibition increased N17 phosphorylation, affecting huntingtin nuclear and subnuclear localization. These data indicate that huntingtin phosphorylation at Ser13 and Ser16 can be modulated by small-molecule drugs, which may have therapeutic potential in Huntingtons disease.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Polyglutamine domain flexibility mediates the proximity between flanking sequences in huntingtin

Nicholas Caron; Carly R. Desmond; Jianrun Xia; Ray Truant

Huntington disease (HD) is a neurodegenerative disorder caused by a CAG expansion within the huntingtin gene that encodes a polymorphic glutamine tract at the amino terminus of the huntingtin protein. HD is one of nine polyglutamine expansion diseases. The clinical threshold of polyglutamine expansion for HD is near 37 repeats, but the mechanism of this pathogenic length is poorly understood. Using Förster resonance energy transfer, we describe an intramolecular proximity between the N17 domain and the downstream polyproline region that flanks the polyglutamine tract of huntingtin. Our data support the hypothesis that the polyglutamine tract can act as a flexible domain, allowing the flanking domains to come into close spatial proximity. This flexibility is impaired with expanded polyglutamine tracts, and we can detect changes in huntingtin conformation at the pathogenic threshold for HD. Altering the structure of N17, either via phosphomimicry or with small molecules, also affects the proximity between the flanking domains. The structural capacity of N17 to fold back toward distal regions within huntingtin requires an interacting protein, protein kinase C and casein kinase 2 substrate in neurons 1 (PACSIN1). This protein has the ability to bind both N17 and the polyproline region, stabilizing the interaction between these two domains. We also developed an antibody-based FRET assay that can detect conformational changes within endogenous huntingtin in wild-type versus HD fibroblasts. Therefore, we hypothesize that wild-type length polyglutamine tracts within huntingtin can form a flexible domain that is essential for proper functional intramolecular proximity, conformations, and dynamics.


Human Molecular Genetics | 2013

The huntingtin N17 domain is a multifunctional CRM1 and Ran-dependent nuclear and cilial export signal

Tamara Maiuri; T. Woloshansky; Jianrun Xia; Ray Truant

The first 17 amino acids of Huntington’s disease (HD) protein, huntingtin, comprise an amphipathic alpha-helical domain that can target huntingtin to the endoplasmic reticulum (ER). N17 is phosphorylated at two serines, shown to be important for disease development in genetic mouse models, and shown to be modified by agents that reverse the disease phenotype in an HD mouse model. Here, we show that the hydrophobic face of N17 comprises a consensus CRM1/exportin-dependent nuclear export signal, and that this nuclear export activity can be affected by serine phospho-mimetic mutants. We define the precise residues that comprise this nuclear export sequence (NES) as well as the interaction of the NES, but not phospho-mimetic mutants, with the CRM1 nuclear export factor. We show that the nuclear localization of huntingtin depends upon the RanGTP/GDP gradient, and that N17 phosphorylation can also distinguish localization of endogenous huntingtin between the basal body and stalk of the primary cilium. We present a mechanism and multifunctional role for N17 in which phosphorylation of N17 not only releases huntingtin from the ER to allow nuclear entry, but also prevents nuclear export during a transient stress response event to increase the levels of nuclear huntingtin and to regulate huntingtin access to the primary cilium. Thus, N17 is a master localization signal of huntingtin that can mediate huntingtin localization between the cytoplasm, nucleus and primary cilium. This localization can be regulated by signaling, and is misregulated in HD.


Journal of Biological Chemistry | 2006

Ataxin-7 can export from the nucleus via a conserved exportin-dependent signal.

Jillian Taylor; Sara K. Grote; Jianrun Xia; Mark Vandelft; Joanna Graczyk; Albert R. La Spada; Ray Truant

Spinocerebellar ataxia type 7 is a progressive neurodegenerative disorder caused by a CAG DNA triplet repeat expansion leading to an expanded polyglutamine tract in the ataxin-7 protein. Ataxin-7 appears to be a transcription factor and a component of the STAGA transcription coactivator complex. Here, using live cell imaging and inverted fluorescence recovery after photobleaching, we demonstrate that ataxin-7 has the ability to export from the nucleus via the CRM-1/exportin pathway and that ataxin-7 contains a classic leucine-type nuclear export signal (NES). We have precisely defined the location of this NES in ataxin-7 and found it to be fully conserved in all vertebrate species. Polyglutamine expansion was seen to reduce the nuclear export rate of mutant ataxin-7 relative to wild-type ataxin-7. Subtle point mutation of the NES in polyglutamine expanded ataxin-7 increased toxicity in primary cerebellar neurons in a polyglutamine length-dependent manner in the context of full-length ataxin-7. Our results add ataxin-7 to a growing list of polyglutamine disease proteins that are capable of nuclear shuttling, and we define an activity of ataxin-7 in the STAGA complex of trafficking between the nucleus and cytoplasm.


Journal of Biological Chemistry | 2012

Identification of a Karyopherin β1/β2 Proline-Tyrosine Nuclear Localization Signal in Huntingtin Protein

Carly R. Desmond; Randy Singh Atwal; Jianrun Xia; Ray Truant

Background: Huntingtin is a large nuclear protein with no previously identified nuclear localization signal. Results: Huntingtin has a PY-NLS that is recognized by karyopherin β1 and β2. Conclusion: The huntingtin NLS has pathway redundancy and has a unique intervening sequence. Significance: This work provides insight into the mechanism and regulation of huntingtin nuclear entry. Among the known pathways of protein nuclear import, the karyopherin β2/transportin pathway is only the second to have a defined nuclear localization signal (NLS) consensus. Huntingtin, a 350-kDa protein, has defined roles in the nucleus, as well as a CRM1/exportin-dependent nuclear export signal; however, the NLS and exact pathway of import have remained elusive. Here, using a live cell assay and affinity chromatography, we show that huntingtin has a karyopherin β2-dependent proline-tyrosine (PY)-NLS in the amino terminus of the protein. This NLS comprises three consensus components: a basic charged sequence, a downstream conserved arginine, and a PY sequence. Unlike the classic PY-NLS, which has an unstructured intervening sequence between the consensus components, we show that a β sheet structured region separating the consensus elements is critical for huntingtin NLS function. The huntingtin PY-NLS is also capable of import through the importin/karyopherin β1 pathway but was not functional in all cell types tested. We propose that this huntingtin PY-NLS may comprise a new class of multiple import factor-dependent NLSs with an internal structural component that may regulate NLS activity.


Canadian Journal of Neurological Sciences | 2006

Canadian Association of Neurosciences Review: polyglutamine expansion neurodegenerative diseases.

Ray Truant; Lynn A. Raymond; Jianrun Xia; Deborah Pinchev; Anjee Burtnik; Randy Singh Atwal

Since the early 1990s, DNA triplet repeat expansions have been found to be the cause in an ever increasing number of genetic neurologic diseases. A subset of this large family of genetic diseases has the expansion of a CAG DNA triplet in the open reading frame of a coding exon. The result of this DNA expansion is the expression of expanded glutamine amino acid repeat tracts in the affected proteins, leading to the term, Polyglutamine Diseases, which is applied to this sub-family of diseases. To date, nine distinct genes are known to be linked to polyglutamine diseases, including Huntingtons disease, Machado-Joseph Disease and spinobulbar muscular atrophy or Kennedys disease. Most of the polyglutamine diseases are characterized clinically as spinocerebellar ataxias. Here we discuss recent successes and advancements in polyglutamine disease research, comparing these different diseases with a common genetic flaw at the level of molecular biology and early drug design for a family of diseases where many new research tools for these genetic disorders have been developed. Polyglutamine disease research has successfully used interdisciplinary collaborative efforts, informative multiple mouse genetic models and advanced tools of pharmaceutical industry research to potentially serve as the prototype model of therapeutic research and development for rare neurodegenerative diseases.


Human Molecular Genetics | 2016

Huntingtin N17 domain is a reactive oxygen species sensor regulating huntingtin phosphorylation and localization.

Laura F. DiGiovanni; Andrew J. Mocle; Jianrun Xia; Ray Truant

The N17 domain of the huntingtin protein is post-translationally modified and is the master regulator of huntingtin intracellular localization. In Huntingtons disease (HD), mutant huntingtin is hypo-phosphorylated at serines 13 and 16 within N17, and increasing N17 phosphorylation has been shown to be protective in HD mouse models. Thus, N17 phosphorylation is defined as a sub-target of huntingtin for potential therapeutic intervention. We have previously shown that cellular stress can affect huntingtin nuclear entry and phosphorylation. Here, we demonstrate that huntingtin localization can be specifically affected by reactive oxygen species (ROS) stress. We have located the sensor of this stress to the N17 domain, specifically to a highly conserved methionine at position 8. In vitro, we show by circular dichroism spectroscopy structural studies that the alpha-helical structure of N17 changes in response to redox conditions and show that the consequence of this change is enhanced N17 phosphorylation and nuclear targeting of endogenous huntingtin. Using N17 substitution point mutants, we demonstrate that N17 sulphoxidation enhances N17 dissociation from the endoplasmic reticulum (ER) membrane. This enhanced solubility makes N17 a better substrate for phosphorylation and subsequent nuclear retention. This ability of huntingtin to sense ROS levels at the ER, with phosphorylation and nuclear localization as a response, suggests that ROS stress due to aging could be a critical molecular trigger of huntingtin functions and dysfunctions in HD and may explain the age-onset nature of the disorder.


Human Molecular Genetics | 2016

Huntingtin is a scaffolding protein in the ATM oxidative DNA damage response complex.

Tamara Maiuri; Andrew J. Mocle; Claudia L. Hung; Jianrun Xia; Willeke M. C. van Roon-Mom; Ray Truant

Huntingtons disease (HD) is an age-dependent neurodegenerative disease. DNA repair pathways have recently been implicated as the most predominant modifiers of age of onset in HD patients. We report that endogenous huntingtin protein directly participates in oxidative DNA damage repair. Using novel chromobodies to detect endogenous human huntingtin in live cells, we show that localization of huntingtin to DNA damage sites is dependent on the kinase activity of ataxia telangiectasia mutated (ATM) protein. Super-resolution microscopy and biochemical assays revealed that huntingtin co-localizes with and scaffolds proteins of the DNA damage response pathway in response to oxidative stress. In HD patient fibroblasts bearing typical clinical HD allele lengths, we demonstrate that there is deficient oxidative DNA damage repair. We propose that DNA damage in HD is caused by dysfunction of the mutant huntingtin protein in DNA repair, and accumulation of DNA oxidative lesions due to elevated reactive oxygen species may contribute to the onset of HD.


Biological Procedures Online | 2006

Practical three color live cell imaging by widefield microscopy.

Jianrun Xia; Song Hon H. Kim; Susan V. MacMillan; Ray Truant

Live cell fluorescence microscopy using fluorescent protein tags derived from jellyfish and coral species has been a successful tool to image proteins and dynamics in many species. Multi-colored aequorea fluorescent protein (AFP) derivatives allow investigators to observe multiple proteins simultaneously, but overlapping spectral properties sometimes require the use of sophisticated and expensive microscopes. Here, we show that the aequorea coerulescens fluorescent protein derivative, PS-CFP2 has excellent practical properties as a blue fluorophore that are distinct from green or red fluorescent proteins and can be imaged with standard filter sets on a widefield microscope. We also find that by widefield illumination in live cells, that PS-CFP2 is very photostable. When fused to proteins that form concentrated puncta in either the cytoplasm or nucleus, PSCFP2 fusions do not artifactually interact with other AFP fusion proteins, even at very high levels of over-expression. PSCFP2 is therefore a good blue fluorophore for distinct three color imaging along with eGFP and mRFP using a relatively simple and inexpensive microscope.


Proceedings of the National Academy of Sciences of the United States of America | 2018

N6-Furfuryladenine is protective in Huntington’s disease models by signaling huntingtin phosphorylation

Laura Erin Bowie; Tamara Maiuri; Melanie Alpaugh; Michelle Gabriel; Nicolas Arbez; Danny Galleguillos; Claudia L. Hung; Shreya Patel; Jianrun Xia; Nicholas T. Hertz; Christopher A. Ross; David W. Litchfield; Simonetta Sipione; Ray Truant

Significance We have discovered a molecule derived from DNA-damage repair that can correct the lack of phosphorylation of mutant huntingtin, the cause of Huntington’s disease (HD). In a mouse model, treatment reverses HD-like disease, and we see the lowering of mutant huntingtin levels to normal. The mechanism of this molecule is that it is processed to make a signal for kinase activity essential for repairing DNA. This mechanism is critical when neurons are stressed and have very low or absent energy levels. We propose that this molecule is a type of signaling from DNA-damage repair that occurs at dangerously low ATP levels. The huntingtin N17 domain is a modulator of mutant huntingtin toxicity and is hypophosphorylated in Huntington’s disease (HD). We conducted high-content analysis to find compounds that could restore N17 phosphorylation. One lead compound from this screen was N6-furfuryladenine (N6FFA). N6FFA was protective in HD model neurons, and N6FFA treatment of an HD mouse model corrects HD phenotypes and eliminates cortical mutant huntingtin inclusions. We show that N6FFA restores N17 phosphorylation levels by being salvaged to a triphosphate form by adenine phosphoribosyltransferase (APRT) and used as a phosphate donor by casein kinase 2 (CK2). N6FFA is a naturally occurring product of oxidative DNA damage. Phosphorylated huntingtin functionally redistributes and colocalizes with CK2, APRT, and N6FFA DNA adducts at sites of induced DNA damage. We present a model in which this natural product compound is salvaged to provide a triphosphate substrate to signal huntingtin phosphorylation via CK2 during low-ATP stress under conditions of DNA damage, with protective effects in HD model systems.

Collaboration


Dive into the Jianrun Xia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge