Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Randy Singh Atwal is active.

Publication


Featured researches published by Randy Singh Atwal.


Nature Chemical Biology | 2011

Kinase inhibitors modulate huntingtin cell localization and toxicity.

Randy Singh Atwal; Carly R. Desmond; Nicholas Caron; Tamara Maiuri; Jianrun Xia; Simonetta Sipione; Ray Truant

Two serine residues within the first 17 amino acid residues of huntingtin (N17) are crucial for modulation of mutant huntingtin toxicity in cell and mouse genetic models of Huntingtons disease. Here we show that the stress-dependent phosphorylation of huntingtin at Ser13 and Ser16 affects N17 conformation and targets full-length huntingtin to chromatin-dependent subregions of the nucleus, the mitotic spindle and cleavage furrow during cell division. Polyglutamine-expanded mutant huntingtin is hypophosphorylated in N17 in both homozygous and heterozygous cell contexts. By high-content screening in live cells, we identified kinase inhibitors that modulated N17 phosphorylation and hence huntingtin subcellular localization. N17 phosphorylation was reduced by casein kinase-2 inhibitors. Paradoxically, IKKβ kinase inhibition increased N17 phosphorylation, affecting huntingtin nuclear and subnuclear localization. These data indicate that huntingtin phosphorylation at Ser13 and Ser16 can be modulated by small-molecule drugs, which may have therapeutic potential in Huntingtons disease.


FEBS Journal | 2008

Huntington’s disease: revisiting the aggregation hypothesis in polyglutamine neurodegenerative diseases

Ray Truant; Randy Singh Atwal; Carly R. Desmond; Lise N. Munsie; Thu Hien Tran

After the successful cloning of the first gene for a polyglutamine disease in 1991, the expanded polyglutamine tract in the nine polyglutamine disease proteins became an obvious therapeutic target. Early hypotheses were that misfolded, precipitated protein could be a universal pathogenic mechanism. However, new data are accumulating on Huntington’s disease and other polyglutamine diseases that appear to contradict the toxic aggregate hypothesis. Recent data suggest that the toxic species of protein in these diseases may be soluble mutant conformers, and that the protein context of expanded polyglutamine is critical to understanding disease specificity. Here we discuss recent publications that define other important therapeutic targets for polyglutamine‐mediated neurodegeneration related to the context of the expanded polyglutamine tract in the disease protein.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice

Alba Di Pardo; Vittorio Maglione; Melanie Alpaugh; Melanie Horkey; Randy Singh Atwal; Jenny Sassone; Andrea Ciammola; Joan S. Steffan; Karim Fouad; Ray Truant; Simonetta Sipione

Huntington disease (HD) is a progressive neurodegenerative monogenic disorder caused by expansion of a polyglutamine stretch in the huntingtin (Htt) protein. Mutant huntingtin triggers neural dysfunction and death, mainly in the corpus striatum and cerebral cortex, resulting in pathognomonic motor symptoms, as well as cognitive and psychiatric decline. Currently, there is no effective treatment for HD. We report that intraventricular infusion of ganglioside GM1 induces phosphorylation of mutant huntingtin at specific serine amino acid residues that attenuate huntingtin toxicity, and restores normal motor function in already symptomatic HD mice. Thus, our studies have identified a potential therapy for HD that targets a posttranslational modification of mutant huntingtin with critical effects on disease pathogenesis.


Human Molecular Genetics | 2011

Mutant Huntingtin Causes Defective Actin Remodeling During Stress: Defining a New Role for Transglutaminase 2 in Neurodegenerative Disease

Lise N. Munsie; Nicholas Caron; Randy Singh Atwal; Ian T. Marsden; Edward J. Wild; James R. Bamburg; Sarah J. Tabrizi; Ray Truant

Huntingtons disease (HD) is caused by an expanded CAG tract in the Interesting transcript 15 (IT15) gene encoding the 350 kDa huntingtin protein. Cellular stresses can trigger the release of huntingtin from the endoplasmic reticulum, allowing huntingtin nuclear entry. Here, we show that endogenous, full-length huntingtin localizes to nuclear cofilin–actin rods during stress and is required for the proper stress response involving actin remodeling. Mutant huntingtin induces a dominant, persistent nuclear rod phenotype similar to that described in Alzheimers disease for cytoplasmic cofilin–actin rods. Using live cell temporal studies, we show that this stress response is similarly impaired when mutant huntingtin is present, or when normal huntingtin levels are reduced. In clinical lymphocyte samples from HD patients, we have quantitatively detected cross-linked complexes of actin and cofilin with complex formation varying in correlation with disease progression. By live cell fluorescence lifetime imaging measurement–Förster resonant energy transfer studies and western blot assays, we quantitatively observed that stress-activated tissue transglutaminase 2 (TG2) is responsible for the actin–cofilin covalent cross-linking observed in HD. These data support a direct role for huntingtin in nuclear actin re-organization, and describe a new pathogenic mechanism for aberrant TG2 enzymatic hyperactivity in neurodegenerative diseases.


Autophagy | 2008

A stress sensitive ER membrane-association domain in Huntingtin protein defines a potential role for Huntingtin in the regulation of autophagy

Randy Singh Atwal; Ray Truant

We have recently published the precise definition of an amino-terminal membrane association domain in huntingtin, capable of targeting to the endoplasmic reticulum and late endosomes as well as autophagic vesicles. In response to ER stress induced by several pathways, huntingtin releases from membranes and rapidly translocates into the nucleus. Huntingtin is then capable of nuclear export and re-association with the ER in the absence of stress. This release is inhibited when huntingtin contains the polyglutamine expansion seen in Huntingtons disease. As a result, mutant huntingtin expressing cells have a perturbed ER and an increase in autophagic vesicles. Here, we discuss the potential function of the huntingtin protein as an ER sentinel, potentially regulating autophagy in response to ER stress. We compare these recent findings to the well characterized mammalian target of rapamycin, mTor, a protein described over a decade ago as related to huntingtin structurally by leucine–rich, repetitive HEAT sequences. Since then, the described functional similarities between huntingtin and mTor are striking, and this new information about huntingtin’s direct association with autophagic vesicles indicates that this structural similarity may extend to functional similarities having an impact upon ER functionality and autophagy. Addendum to: Atwal RS, Xia J, Pinchev D, Taylor J, Epand RM, Truant R. Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum Mol Genet 2007; 16:2600-15.


Journal of Biological Chemistry | 2012

Identification of a Karyopherin β1/β2 Proline-Tyrosine Nuclear Localization Signal in Huntingtin Protein

Carly R. Desmond; Randy Singh Atwal; Jianrun Xia; Ray Truant

Background: Huntingtin is a large nuclear protein with no previously identified nuclear localization signal. Results: Huntingtin has a PY-NLS that is recognized by karyopherin β1 and β2. Conclusion: The huntingtin NLS has pathway redundancy and has a unique intervening sequence. Significance: This work provides insight into the mechanism and regulation of huntingtin nuclear entry. Among the known pathways of protein nuclear import, the karyopherin β2/transportin pathway is only the second to have a defined nuclear localization signal (NLS) consensus. Huntingtin, a 350-kDa protein, has defined roles in the nucleus, as well as a CRM1/exportin-dependent nuclear export signal; however, the NLS and exact pathway of import have remained elusive. Here, using a live cell assay and affinity chromatography, we show that huntingtin has a karyopherin β2-dependent proline-tyrosine (PY)-NLS in the amino terminus of the protein. This NLS comprises three consensus components: a basic charged sequence, a downstream conserved arginine, and a PY sequence. Unlike the classic PY-NLS, which has an unstructured intervening sequence between the consensus components, we show that a β sheet structured region separating the consensus elements is critical for huntingtin NLS function. The huntingtin PY-NLS is also capable of import through the importin/karyopherin β1 pathway but was not functional in all cell types tested. We propose that this huntingtin PY-NLS may comprise a new class of multiple import factor-dependent NLSs with an internal structural component that may regulate NLS activity.


Human Molecular Genetics | 2014

Live cell imaging and biophotonic methods reveal two types of mutant huntingtin inclusions

Nicholas Caron; Claudia L. Hung; Randy Singh Atwal; Ray Truant

Huntingtons disease (HD) is an autosomal dominant, neurodegenerative disorder that can be characterized by the presence of protein inclusions containing mutant huntingtin within a subset of neurons in the brain. Since their discovery, the relevance of inclusions to disease pathology has been controversial. We show using super-resolution fluorescence imaging and Förster resonance energy transfer (FRET) in live cells, that mutant huntingtin fragments can form two morphologically and conformationally distinct inclusion types. Using fluorescence recovery after photobleaching (FRAP), we demonstrate that the two huntingtin inclusion types have unique dynamic properties. The ability to form one or the other type of inclusion can be influenced by the phosphorylation state of serine residues at amino acid positions 13 and 16 within the huntingtin protein. We can define two types of inclusions: fibrillar, which are tightly packed, do not exchange protein with the soluble phase, and result from phospho-modification at serines 13 and 16 of the N17 domain, and globular, which are loosely packed, can readily exchange with the soluble phase, and are not phosphorylated in N17. We hypothesize that the protective effect of N17 phosphorylation or phospho-mimicry seen in animal models, at the level of protein inclusions with elevated huntingtin levels, is to induce a conformation of the huntingtin amino-terminus that causes fragments to form tightly packed inclusions that do not exit the insoluble phase, and hence exert less toxicity. The identification of these sub-types of huntingtin inclusions could allow for drug discovery to promote protective inclusions of mutant huntingtin protein in HD.


eLife | 2016

Huntingtin’s spherical solenoid structure enables polyglutamine tract-dependent modulation of its structure and function

Ravi Vijayvargia; Raquel F. Epand; Alexander Leitner; Taeyang Jung; Baehyun Shin; Roy Jung; Alejandro Lloret; Randy Singh Atwal; Hyeongseok Lee; Jong-Min Lee; Ruedi Aebersold; Hans Hebert; Ji-Joon Song; Ihn Sik Seong

The polyglutamine expansion in huntingtin protein causes Huntington’s disease. Here, we investigated structural and biochemical properties of huntingtin and the effect of the polyglutamine expansion using various biophysical experiments including circular dichroism, single-particle electron microscopy and cross-linking mass spectrometry. Huntingtin is likely composed of five distinct domains and adopts a spherical α-helical solenoid where the amino-terminal and carboxyl-terminal regions fold to contain a circumscribed central cavity. Interestingly, we showed that the polyglutamine expansion increases α-helical properties of huntingtin and affects the intramolecular interactions among the domains. Our work delineates the structural characteristics of full-length huntingtin, which are affected by the polyglutamine expansion, and provides an elegant solution to the apparent conundrum of how the extreme amino-terminal polyglutamine tract confers a novel property on huntingtin, causing the disease. DOI: http://dx.doi.org/10.7554/eLife.11184.001


Canadian Journal of Neurological Sciences | 2006

Canadian Association of Neurosciences Review: polyglutamine expansion neurodegenerative diseases.

Ray Truant; Lynn A. Raymond; Jianrun Xia; Deborah Pinchev; Anjee Burtnik; Randy Singh Atwal

Since the early 1990s, DNA triplet repeat expansions have been found to be the cause in an ever increasing number of genetic neurologic diseases. A subset of this large family of genetic diseases has the expansion of a CAG DNA triplet in the open reading frame of a coding exon. The result of this DNA expansion is the expression of expanded glutamine amino acid repeat tracts in the affected proteins, leading to the term, Polyglutamine Diseases, which is applied to this sub-family of diseases. To date, nine distinct genes are known to be linked to polyglutamine diseases, including Huntingtons disease, Machado-Joseph Disease and spinobulbar muscular atrophy or Kennedys disease. Most of the polyglutamine diseases are characterized clinically as spinocerebellar ataxias. Here we discuss recent successes and advancements in polyglutamine disease research, comparing these different diseases with a common genetic flaw at the level of molecular biology and early drug design for a family of diseases where many new research tools for these genetic disorders have been developed. Polyglutamine disease research has successfully used interdisciplinary collaborative efforts, informative multiple mouse genetic models and advanced tools of pharmaceutical industry research to potentially serve as the prototype model of therapeutic research and development for rare neurodegenerative diseases.


Human Molecular Genetics | 2007

Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity

Randy Singh Atwal; Jianrun Xia; Deborah Pinchev; Jillian Taylor; Richard M. Epand; Ray Truant

Collaboration


Dive into the Randy Singh Atwal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge