Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianxin Sun is active.

Publication


Featured researches published by Jianxin Sun.


Circulation Research | 2013

MicroRNA-663 Regulates Human Vascular Smooth Muscle Cell Phenotypic Switch and Vascular Neointimal Formation

Pan Li; Ni Zhu; Bing Yi; Nadan Wang; Ming Chen; Xiaohua You; Xianxian Zhao; Charalambos Solomides; Yongwen Qin; Jianxin Sun

Rationale: Abnormal phenotypic switch of vascular smooth muscle cell (VSMC) is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. MicroRNAs (miRNAs) have emerged as important regulators for VSMC function, and we recently identified miR-663 as critical for controlling human aortic smooth muscle cell proliferation. Objective: To investigate whether miR-663 plays a role in human VSMC phenotypic switch and the development of neointima formation. Methods and Results: By using quantitative reverse-transcription polymerase chain reaction, we found that miR-663 was significantly downregulated in human aortic VSMCs on platelet-derived growth factor treatment, whereas expression was markedly increased during VSMC differentiation. Furthermore, we demonstrated that overexpression of miR-663 increased expression of VSMC differentiation marker genes, such as smooth muscle 22&agr;, smooth muscle &agr;-actin, calponin, and smooth muscle myosin heavy chain, and potently inhibited platelet-derived growth factor–induced VSMC proliferation and migration. We identified the transcription factor JunB and myosin light chain 9 as downstream targets of miR-663 in human VSMCs, because overexpression of miR-663 markedly inhibited expression of JunB and its downstream molecules, such as myosin light chain 9 and matrix metalloproteinase 9. Finally, we showed that adeno-miR-663 markedly suppressed the neointimal lesion formation by ≈50% in mice after vascular injury induced by carotid artery ligation, specifically via decreased JunB expression. Conclusions: These results indicate that miR-663 is a novel modulator of human VSMC phenotypic switch by targeting JunB/myosin light chain 9 expression. These findings suggest that targeting miR-663 or its specific downstream targets in human VSMCs may represent an attractive approach for the treatment of proliferative vascular diseases.


Cardiovascular Research | 2013

MicroRNA-638 is highly expressed in human vascular smooth muscle cells and inhibits PDGF-BB-induced cell proliferation and migration through targeting orphan nuclear receptor NOR1

Pan Li; Yan Liu; Bing Yi; Guokun Wang; Xiaohua You; Xianxian Zhao; Ross Summer; Yongwen Qin; Jianxin Sun

AIMS Aberrant vascular smooth muscle cell (VSMC) proliferation and migration contribute significantly to the development of vascular pathologies, such as atherosclerosis and restenosis. MicroRNAs have recently emerged as critical modulators in cellular processes and the purpose of this study is to identify novel miRNA regulators implicated in human aortic VSMC proliferation and migration. METHODS AND RESULTS To identify miRNAs that are differentially expressed in human VSMCs, we performed miRNA microarray analysis in human aortic smooth muscle cells (SMCs) at different time points after platelet-derived growth factor (PDGF) stimulation. Here, we identified microRNA-638 (miR-638) as a transcript that was one of the most significantly down-regulated in human VSMCs after PDGF stimulation. Furthermore, we confirmed, by Quantitative RT-PCR, that miR-638 is highly expressed in human VSMCs, and its expression is markedly down-regulated in a dose- and time-dependent manner upon PDGF treatment. Consistent with a critical role in SMC proliferation, we found that miR-638 expression was significantly up-regulated in human VSMCs cultured in differentiation medium, a condition that inhibits SMC proliferation. Furthermore, we identified the orphan nuclear receptor NOR1 as a downstream target gene product of miR-638 and down-regulation of NOR1 is critical for miR-638-mediated inhibitory effects on PDGF-induced cyclin D1 expression, cell proliferation, and migration in human aortic SMCs. CONCLUSION These results indicate that miR-638 is a key molecule in regulating human VSMC proliferation and migration by targeting the NOR1/cyclin D pathway and suggest that specific modulation of miR-638 in human VSMCs may represent an attractive approach for the treatment of proliferative vascular diseases.


Scientific Reports | 2015

Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury

Dilip Shah; Freddy Romero; Michelle Duong; Nadan Wang; Bishnuhari Paudyal; Benjamin T. Suratt; Caleb B. Kallen; Jianxin Sun; Ying Zhu; Kenneth Walsh; Ross Summer

Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese mice expressed higher levels of leukocyte adhesion markers and lower levels of cell-cell junctional proteins when compared to lean mice. We tested whether systemic factors are responsible for these alterations in the pulmonary endothelium; treatment of primary lung endothelial cells with obese serum enhanced the expression of adhesion proteins and reduced the expression of endothelial junctional proteins when compared to lean serum. Alterations in pulmonary endothelial cells observed in obese mice were associated with enhanced susceptibility to LPS-induced lung injury. Restoring serum adiponectin levels reversed the effects of obesity on the lung endothelium and attenuated susceptibility to acute injury. Our work indicates that obesity impairs pulmonary vascular homeostasis and enhances susceptibility to acute injury and provides mechanistic insight into the increased prevalence of ARDS in obese humans.


Molecular and Cellular Biology | 2015

Orphan Nuclear Receptor Nur77 Inhibits Cardiac Hypertrophic Response to Beta-Adrenergic Stimulation.

Guijun Yan; Ni Zhu; Shengdong Huang; Bing Yi; Xiying Shang; Ming Chen; Nadan Wang; Guan-Xin Zhang; Jennifer A Talarico; Douglas G. Tilley; Erhe Gao; Jianxin Sun

ABSTRACT The orphan nuclear receptor Nur77 plays critical roles in cardiovascular diseases, and its expression is markedly induced in the heart after beta-adrenergic receptor (β-AR) activation. However, the functional significance of Nur77 in β-AR signaling in the heart remains unclear. By using Northern blot, Western blot, and immunofluorescent staining assays, we showed that Nur77 expression was markedly upregulated in cardiomyocytes in response to multiple hypertrophic stimuli, including isoproterenol (ISO), phenylephrine (PE), and endothelin-1 (ET-1). In a time- and dose-dependent manner, ISO increases Nur77 expression in the nuclei of cardiomyocytes. Overexpression of Nur77 markedly inhibited ISO-induced cardiac hypertrophy by inducing nuclear translocation of Nur77 in cardiomyocytes. Furthermore, cardiac overexpression of Nur77 by intramyocardial injection of Ad-Nur77 substantially inhibited cardiac hypertrophy and ameliorated cardiac dysfunction after chronic infusion of ISO in mice. Mechanistically, we demonstrated that Nur77 functionally interacts with NFATc3 and GATA4 and inhibits their transcriptional activities, which are critical for the development of cardiac hypertrophy. These results demonstrate for the first time that Nur77 is a novel negative regulator for the β-AR-induced cardiac hypertrophy through inhibiting the NFATc3 and GATA4 transcriptional pathways. Targeting Nur77 may represent a potentially novel therapeutic strategy for preventing cardiac hypertrophy and heart failure.


PLOS ONE | 2013

Glyceraldehyde-3-phosphate dehydrogenase interacts with proapoptotic kinase mst1 to promote cardiomyocyte apoptosis.

Bei You; Shengdong Huang; Qing Qin; Bing Yi; Yang Yuan; Zhiyun Xu; Jianxin Sun

Mammalian sterile 20-like kinase 1 (Mst1) is a critical component of the Hippo signaling pathway, which regulates a variety of biological processes ranging from cell contact inhibition, organ size control, apoptosis and tumor suppression in mammals. Mst1 plays essential roles in the heart disease since its activation causes cardiomyocyte apoptosis and dilated cardiomyopathy. However, the mechanism underlying Mst1 activation in the heart remains unknown. In a yeast two-hybrid screen of a human heart cDNA library with Mst1 as bait, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as an Mst1-interacting protein. The interaction of GAPDH with Mst1 was confirmed by co-immunoprecipitation in both co-transfected HEK293 cells and mouse heart homogenates, in which GAPDH interacted with the kinase domain of Mst1, whereas the C-terminal catalytic domain of GAPDH mediated its interaction with Mst1. Moreover, interaction of Mst1 with GAPDH caused a robust phosphorylation of GAPDH and markedly increased the Mst1 activity in cells. Chelerythrine, a potent inducer of apoptosis, substantially increased the nuclear translocation and interaction of GAPDH and Mst1 in cardiomyocytes. Overexpression of GAPDH significantly augmented the Mst1 mediated apoptosis, whereas knockdown of GAPDH markedly attenuated the Mst1 activation and cardiomyocyte apoptosis in response to either chelerythrine or hypoxia/reoxygenation. These findings reveal a novel function of GAPDH in Mst1 activation and cardiomyocyte apoptosis and suggest that disruption of GAPDH interaction with Mst1 may prevent apoptosis related heart diseases such as heart failure and ischemic heart disease.


International Journal of Cardiology | 2013

Protein-L-isoaspartate (D-aspartate) O-methyltransferase protects cardiomyocytes against hypoxia induced apoptosis through inhibiting proapoptotic kinase Mst1

Guijun Yan; Qing Qin; Bing Yi; Kurt J. Chuprun; Haixiang Sun; Shengdong Huang; Jianxin Sun

BACKGROUND Mammalian sterile 20-like kinase 1 (Mst1) is a mammalian homolog of Hippo kinase from Drosophila and it is a critical component of the Hippo signaling pathway, which regulates a variety of biological processes ranging from cell contact inhibition, organ size control, apoptosis and tumor suppression in mammals. Mst1 plays essential roles in heart disease since its activation causes cardiomyocyte apoptosis and dilated cardiomyopathy. However, the mechanism underlying Mst1 activation in the heart is not known. METHODS AND RESULTS To identify novel cardiac proteins that may regulate Mst1 activity in the heart under pathophysiological conditions, a yeast two-hybrid screening of a human heart cDNA library with a dominant-negative Mst1 (K59R) mutant used as bait was performed. As a result, protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1) was identified as an Mst1-interacting protein. The interaction of PCMT1 with Mst1 was confirmed by co-immunoprecipitation in both co-transfected HEK293 cells and native cardiomyocytes, in which PCMT1 interacted with the kinase domain of Mst1, but not with its C-terminal regulatory domain. Overexpression of PCMT1 did not affect the Mst1 expression, but significantly attenuated the Mst1 activation and its apoptotic effects in response to the hypoxia/reoxygenation induced injury in cardiomyocytes. Indeed, upregulation of PCMT1 by CGP3466B, a compound related to the anti-Parkinsons drug R-(-)-deprenyl with potent antiapoptotic effects, inhibited the hypoxia/reoxygenation induced Mst1 activation and cardiomyocyte apoptosis. CONCLUSIONS These findings implicate PCMT1 as a novel inhibitor of Mst1 activation in cardiomyocytes and suggest that targeting PCMT1 may prevent myocardial apoptosis through inhibition of Mst1.


Biochemical Pharmacology | 2014

Induction of Nur77 by hyperoside inhibits vascular smooth muscle cell proliferation and neointimal formation.

Yan Huo; Bing Yi; Ming Chen; Nadan Wang; Pengguo Chen; Cheng Guo; Jianxin Sun

Nur77 is an orphan nuclear receptor that belongs to the nuclear receptor 4A (NR4A) subfamily, which has been implicated in a variety of biological events, such as cell apoptosis, proliferation, inflammation, and metabolism. Activation of Nur77 has recently been shown to be beneficial for the treatment of cardiovascular and metabolic diseases. The purpose of this study is to identify novel natural Nur77 activators and investigate their roles in preventing vascular diseases. By measuring Nur77 expression using quantitative RT-PCR, we screened active ingredients extracted from Chinese herb medicines with beneficial cardiovascular effects. Hyperoside (quercetin 3-D-galactoside) was identified as one of the potent activators for inducing Nur77 expression and activating its transcriptional activity in vascular smooth muscle cells (VSMCs). We demonstrated that hyperoside, in a time and dose dependent manner, markedly increased the expression of Nur77 in rat VSMCs, with an EC50 of ∼0.83 μM. Mechanistically, we found that hyperoside significantly increased the phosphorylation of ERK1/2 MAP kinase and its downstream target cAMP response element-binding protein (CREB), both of which contributed to the hyperoside-induced Nur77 expression in rat VSMCs. Moreover, through activation of Nur77 receptor, hyperoside markedly inhibited both vascular smooth muscle cell proliferation in vitro and the carotid artery ligation-induced neointimal formation in vivo. These findings demonstrate that hyperoside is a potent natural activator of Nur77 receptor, which can be potentially used for prevention and treatment of occlusive vascular diseases.


American Journal of Respiratory Cell and Molecular Biology | 2013

Nur77 Suppresses Pulmonary Artery Smooth Muscle Cell Proliferation through Inhibition of the STAT3/Pim-1/NFAT Pathway

Yan Liu; Jian Zhang; Bing Yi; Ming Chen; Jia Qi; You Yin; Xiaotong Lu; Jean-Francois Jasmin; Jianxin Sun

The orphan nuclear receptor 4A (NR4A) family plays critical roles in the regulation of cell proliferation, differentiation, and survival in the cardiovascular system. However, the molecular mechanisms underlying the regulation of NR4A receptor expression and its role in pulmonary artery smooth muscle cell (PASMC) function remain unclear. Here, we investigated whether the NR4A family regulates PASMC proliferation, and if so, which mechanisms are involved. By using quantitative real-time RT-PCR, we showed that the orphan nuclear receptor Nur77 was the most abundant member of NR4A family expressed in rat PASMCs, as compared with the two other members, NOR-1 and Nurr1. In rat PASMCs, expression of Nur77 was robustly induced in response to several pathologic stimuli of pulmonary arterial hypertension (PAH), such as hypoxia, 5-hydroxytryptamine (5-HT), platelet-derived growth factor, and endothelin-1. Importantly, Nur77 was also significantly increased in lungs of rats with monocrotaline-induced PAH. Furthermore, we demonstrated that 5-HT markedly up-regulated Nur77 expression through the mitogen-activated protein kinases/extracellular signal-regulated kinase 1/2 pathway. Overexpression of Nur77 inhibited 5-HT-induced PASMC proliferation, as well as the expression of cyclin D1 and proliferating cell nuclear antigen. Mechanistically, we demonstrated that Nur77 specifically interacts with signal transducer and activator of transcription 3, thus inhibiting its phosphorylation and expression of its target genes, such as Pim-1, nuclear factor of activated T cells c2, and survivin in PASMCs. These results indicate that Nur77 is a novel negative-feedback regulator of PASMC proliferation through inhibition of the signal transducer and activator of transcription 3/Pim-1/nuclear factor of activated T cells axis. Modulation of Nur77 activity may potentially represent a novel therapeutic strategy for the treatment of PAH.


Cardiovascular Research | 2016

Pim1 kinase promotes angiogenesis through phosphorylation of endothelial nitric oxide synthase at Ser-633

Ming Chen; Bing Yi; Ni Zhu; Xin Wei; Guanxin Zhang; Shengdong Huang; Jianxin Sun

AIMS Posttranslational modification, such as phosphorylation, plays an essential role in regulating activation of endothelial NO synthase (eNOS). In the present study, we aim to determine whether eNOS could be phosphorylated and regulated by a novel serine/threonine-protein kinase Pim1 in vascular endothelial cells (ECs). METHODS AND RESULTS Using immunoprecipitation and protein kinase assays, we demonstrated that Pim1 specifically interacts with eNOS, which leads to a marked phosphorylation of eNOS at Ser-633 and increased production of nitric oxide (NO). Intriguingly, in response to VEGF stimulation, eNOS phosphorylation at Ser-633 exhibits two distinct phases: transient phosphorylation occurring between 0 and 60 min and sustained phosphorylation occurring between 2 and 24 h, which are mediated by the protein kinase A (PKA) and Pim1, respectively. Inhibiting Pim1 by either pharmacological inhibitor SMI-4a or the dominant-negative form of Pim1 markedly attenuates VEGF-induced tube formation, while Pim1 overexpression significantly increases EC tube formation and migration in an NO-dependent manner. Importantly, Pim1 expression and eNOS phosphorylation at Ser-633 were substantially decreased in high glucose-treated ECs and in the aorta of db/db diabetic mice. Increased Pim1 expression ameliorates impaired vascular angiogenesis in diabetic mice, as determined by an ex vivo aortic ring assay. CONCLUSION Our findings demonstrate Pim1 as a novel kinase that is responsible for the phosphorylation of eNOS at Ser-633 and enhances EC sprouting of aortic rings from diabetic mice, suggesting that Pim1 could potentially serve as a novel therapeutic target for revascularization strategies.


Journal of Molecular and Cellular Cardiology | 2014

Orphan nuclear receptor Nur77 is a novel negative regulator of endothelin-1 expression in vascular endothelial cells.

Qing Qin; Ming Chen; Bing Yi; Xiaohua You; Ping Yang; Jianxin Sun

Endothelin-1 (ET-1) produced by vascular endothelial cells plays essential roles in the regulation of vascular tone and development of cardiovascular diseases. The objective of this study is to identify novel regulators implicated in the regulation of ET-1 expression in vascular endothelial cells (ECs). By using quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), we show that either ectopic expression of orphan nuclear receptor Nur77 or pharmacological activation of Nur77 by 6-mercaptopurine (6-MP) substantially inhibits ET-1 expression in human umbilical vein endothelial cells (HUVECs), under both basal and thrombin-stimulated conditions. Furthermore, thrombin-stimulated ET expression is significantly augmented in both Nur77 knockdown ECs and aort from Nur77 knockout mice, suggesting that Nur77 is a negative regulator of ET-1 expression. Inhibition of ET-1 expression by Nur77 occurs at gene transcriptional levels, since Nur77 potently inhibits ET-1 promoter activity, without affecting ET-1 mRNA stability. As shown in electrophoretic mobility shift assay (EMSA), Nur77 overexpression markedly inhibits both basal and thrombin-stimulated transcriptional activity of AP-1. Mechanistically, we demonstrate that Nur77 specially interacts with c-Jun and inhibits AP-1 dependent c-Jun promoter activity, which leads to a decreased expression of c-Jun, a critical component involved in both AP-1 transcriptional activity and ET-1 expression in ECs. These findings demonstrate that Nur77 is a novel negative regulator of ET-1 expression in vascular ECs through an inhibitory interaction with the c-Jun/AP-1 pathway. Activation of Nur77 may represent a useful therapeutic strategy for preventing certain cardiovascular diseases, such as atherosclerosis and pulmonary artery hypertension.

Collaboration


Dive into the Jianxin Sun's collaboration.

Top Co-Authors

Avatar

Bing Yi

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Ming Chen

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Shengdong Huang

Second Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Qing Qin

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xianxian Zhao

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Guanxin Zhang

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Guijun Yan

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Nadan Wang

Thomas Jefferson University

View shared research outputs
Researchain Logo
Decentralizing Knowledge