Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianxun Qi is active.

Publication


Featured researches published by Jianxun Qi.


Nature | 2013

Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26

Guangwen Lu; Yawei Hu; Qihui Wang; Jianxun Qi; Feng Gao; Yan Li; Yanfang Zhang; Wei Zhang; Yuan Yuan; Jinku Bao; Buchang Zhang; Yi Shi; Jinghua Yan; George F. Gao

The newly emergent Middle East respiratory syndrome coronavirus (MERS-CoV) can cause severe pulmonary disease in humans, representing the second example of a highly pathogenic coronavirus, the first being SARS-CoV. CD26 (also known as dipeptidyl peptidase 4, DPP4) was recently identified as the cellular receptor for MERS-CoV. The engagement of the MERS-CoV spike protein with CD26 mediates viral attachment to host cells and virus–cell fusion, thereby initiating infection. Here we delineate the molecular basis of this specific interaction by presenting the first crystal structures of both the free receptor binding domain (RBD) of the MERS-CoV spike protein and its complex with CD26. Furthermore, binding between the RBD and CD26 is measured using real-time surface plasmon resonance with a dissociation constant of 16.7 nM. The viral RBD is composed of a core subdomain homologous to that of the SARS-CoV spike protein, and a unique strand-dominated external receptor binding motif that recognizes blades IV and V of the CD26 β-propeller. The atomic details at the interface between the two binding entities reveal a surprising protein–protein contact mediated mainly by hydrophilic residues. Sequence alignment indicates, among betacoronaviruses, a possible structural conservation for the region homologous to the MERS-CoV RBD core, but a high variation in the external receptor binding motif region for virus-specific pathogenesis such as receptor recognition.


Science | 2013

Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses.

Yi Shi; Wei Zhang; Fei Wang; Jianxun Qi; Ying Wu; Hao Song; Feng Gao; Yuhai Bi; Yanfang Zhang; Zheng Fan; Cheng-Feng Qin; Honglei Sun; Jinhua Liu; Joel Haywood; Wenjun Liu; Weimin Gong; Dayan Wang; Yuelong Shu; Wang Y; Jinghua Yan; George F. Gao

Two Viruses to Bind Structural studies of two different H7N9 influenza viruses isolated from humans—A/Shanghai/1/2013 and A/Anhui/1/2013—which have different amino acid sequences in the receptor binding site, provide data indicating that the virus is in transition with respect to host adaptation. The Shanghai virus was one of the first isolated in humans that binds avian receptor glycans with high affinity, but binds poorly to human receptors. However, the later Anhui isolates can bind both avian and human receptors at high affinity. Shi et al. (p. 243, published online 5 September) show that four hydrophobic mutations contribute to acquisition of affinity for the human receptor by the virus hemagglutinin (HA) and confirm this effect in binding studies with virus particles. Further comparison of a mutant H7N9 A/Anhui/1/2013 HA with the bird flu H5N1 virus revealed the significance of some of the naturally occurring changes observed in circulating H7N9 viruses, which helps to explain how these viruses have been able to cause many severe human infections in a short time. Four amino acids in the H7N9 influenza virus binding site provide a hydrophobic environment for human receptors. An avian-origin human-infecting influenza (H7N9) virus was recently identified in China. We have evaluated the viral hemagglutinin (HA) receptor–binding properties of two human H7N9 isolates, A/Shanghai/1/2013 (SH-H7N9) (containing the avian-signature residue Gln226) and A/Anhui/1/2013 (AH-H7N9) (containing the mammalian-signature residue Leu226). We found that SH-H7N9 HA preferentially binds the avian receptor analog, whereas AH-H7N9 HA binds both avian and human receptor analogs. Furthermore, an AH-H7N9 mutant HA (Leu226 → Gln) was found to exhibit dual receptor-binding property, indicating that other amino acid substitutions contribute to the receptor-binding switch. The structures of SH-H7N9 HA, AH-H7N9 HA, and its mutant in complex with either avian or human receptor analogs show how AH-H7N9 can bind human receptors while still retaining the avian receptor–binding property.


Nature Structural & Molecular Biology | 2010

The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site

Qing Li; Jianxun Qi; Wei Zhang; Christopher J. Vavricka; Yi Shi; Jinhua Wei; Enguang Feng; Jingshan Shen; Ji-Long Chen; Di Liu; Jianhua He; Jinghua Yan; Hong Liu; Hualiang Jiang; Maikun Teng; Xuebing Li; George F. Gao

Influenza A virus neuraminidase can be classified into groups 1 and 2 on the basis of its primary structure. The main structural feature of group 1 neuraminidase is an extra cavity in the active site, the 150-cavity. Here we present the crystal structure of neuraminidase from the 2009 pandemic H1N1 influenza strain. In contrast to other characterized N1 neuraminidases, which are all members of group 1, 2009 H1N1 neuraminidase does not have a 150-cavity.


Cell Host & Microbe | 2014

Bat Origins of MERS-CoV Supported by Bat Coronavirus HKU4 Usage of Human Receptor CD26

Qihui Wang; Jianxun Qi; Yuan Yuan; Yifang Xuan; Pengcheng Han; Yuhua Wan; Wei Ji; Yan Li; Ying Wu; Jianwei Wang; Aikichi Iwamoto; Patrick C. Y. Woo; Kwok-Yung Yuen; Jinghua Yan; Guangwen Lu; George F. Gao

Summary The recently reported Middle East respiratory syndrome coronavirus (MERS-CoV) is phylogenetically closely related to the bat coronaviruses (BatCoVs) HKU4 and HKU5. However, the evolutionary pathway of MERS-CoV is still unclear. A receptor binding domain (RBD) in the MERS-CoV envelope-embedded spike protein specifically engages human CD26 (hCD26) to initiate viral entry. The high sequence identity in the viral spike protein prompted us to investigate if HKU4 and HKU5 can recognize hCD26 for cell entry. We found that HKU4-RBD, but not HKU5-RBD, binds to hCD26, and pseudotyped viruses embedding HKU4 spike can infect cells via hCD26 recognition. The structure of the HKU4-RBD/hCD26 complex revealed a hCD26-binding mode similar overall to that observed for MERS-RBD. HKU4-RBD, however, is less adapted to hCD26 than MERS-RBD, explaining its lower affinity for receptor binding. Our findings support a bat origin for MERS-CoV and indicate the need for surveillance of HKU4-related viruses in bats.


Protein & Cell | 2010

Crystal structure of the swine-origin A (H1N1)-2009 influenza A virus hemagglutinin (HA) reveals similar antigenicity to that of the 1918 pandemic virus

Wei Zhang; Jianxun Qi; Yi Shi; Qing Li; Feng Gao; Yeping Sun; Xishan Lu; Qiong Lu; Christopher J. Vavricka; Di Liu; Jinghua Yan; George F. Gao

Influenza virus is the causative agent of the seasonal and occasional pandemic flu. The current H1N1 influenza pandemic, announced by the WHO in June 2009, is highly contagious and responsible for global economic losses and fatalities. Although the H1N1 gene segments have three origins in terms of host species, the virus has been named swine-origin influenza virus (S-OIV) due to a predominant swine origin. 2009 S-OIV has been shown to highly resemble the 1918 pandemic virus in many aspects. Hemagglutinin is responsible for the host range and receptor binding of the virus and is therefore a primary indicator for the potential of infection. Primary sequence analysis of the 2009 S-OIV hemagglutinin (HA) reveals its closest relationship to that of the 1918 pandemic influenza virus, however, analysis at the structural level is necessary to critically assess the functional significance. In this report, we report the crystal structure of soluble hemagglutinin H1 (09H1) at 2.9 Å, illustrating that the 09H1 is very similar to the 1918 pandemic HA (18H1) in overall structure and the structural modules, including the five defined antiboby (Ab)-binding epitopes. Our results provide an explanation as to why sera from the survivors of the 1918 pandemics can neutralize the 2009 S-OIV, and people born around the 1918 are resistant to the current pandemic, yet younger generations are more susceptible to the 2009 pandemic.


PLOS Pathogens | 2011

Structural and functional analysis of laninamivir and its octanoate prodrug reveals group specific mechanisms for influenza NA inhibition

Christopher J. Vavricka; Qing Li; Yan Wu; Jianxun Qi; Wang M; Yue Liu; Feng Gao; Jun Liu; Enguang Feng; Jianhua He; Jinfang Wang; Hong Liu; Hualiang Jiang; George F. Gao

The 2009 H1N1 influenza pandemic (pH1N1) led to record sales of neuraminidase (NA) inhibitors, which has contributed significantly to the recent increase in oseltamivir-resistant viruses. Therefore, development and careful evaluation of novel NA inhibitors is of great interest. Recently, a highly potent NA inhibitor, laninamivir, has been approved for use in Japan. Laninamivir is effective using a single inhaled dose via its octanoate prodrug (CS-8958) and has been demonstrated to be effective against oseltamivir-resistant NA in vitro. However, effectiveness of laninamivir octanoate prodrug against oseltamivir-resistant influenza infection in adults has not been demonstrated. NA is classified into 2 groups based upon phylogenetic analysis and it is becoming clear that each group has some distinct structural features. Recently, we found that pH1N1 N1 NA (p09N1) is an atypical group 1 NA with some group 2-like features in its active site (lack of a 150-cavity). Furthermore, it has been reported that certain oseltamivir-resistant substitutions in the NA active site are group 1 specific. In order to comprehensively evaluate the effectiveness of laninamivir, we utilized recombinant N5 (typical group 1), p09N1 (atypical group 1) and N2 from the 1957 pandemic H2N2 (p57N2) (typical group 2) to carry out in vitro inhibition assays. We found that laninamivir and its octanoate prodrug display group specific preferences to different influenza NAs and provide the structural basis of their specific action based upon their novel complex crystal structures. Our results indicate that laninamivir and zanamivir are more effective against group 1 NA with a 150-cavity than group 2 NA with no 150-cavity. Furthermore, we have found that the laninamivir octanoate prodrug has a unique binding mode in p09N1 that is different from that of group 2 p57N2, but with some similarities to NA-oseltamivir binding, which provides additional insight into group specific differences of oseltamivir binding and resistance.


Science | 2013

An Airborne Transmissible Avian Influenza H5 Hemagglutinin Seen at the Atomic Level

Wei Zhang; Yi Shi; Xishan Lu; Yuelong Shu; Jianxun Qi; George F. Gao

Influencing Influenza Currently, there is anxiety that the avian H5N1 influenza virus will reassort with the highly transmissible and epidemic H1N1 subtype to trigger a virulent human pandemic. Y. Zhang et al. (p. 1459, published online 2 May) used reverse genetics to make all possible reassortants between a virulent bird H5N1 with genes from a human pandemic H1N1. Virulence was tested in mice and transmissibility was tested between guinea pigs, which have both avian- and human-like airway influenza virus receptors. To assess what is happening to the receptor-ligand interactions as a result of these mutations, W. Zhang et al. (p. 1463, published online 2 May) probed the structure of both wild-type and mutant hemagglutinin of H5 in complex with analogs of the avian and human receptor types. Certain mutations in the receptor-binding site changed binding affinity. Mutations in avian H5N1 influenza virus cause conformational changes that increase binding affinity to mammalian receptors. Recent studies have identified several mutations in the hemagglutinin (HA) protein that allow the highly pathogenic avian H5N1 influenza A virus to transmit between mammals by airborne route. Here, we determined the complex structures of wild-type and mutant HAs derived from an Indonesia H5N1 virus bound to either avian or human receptor sialic acid analogs. A cis/trans conformational change in the glycosidic linkage of the receptor analog was observed, which explains how the H5N1 virus alters its receptor-binding preference. Furthermore, the mutant HA possessed low affinities for both avian and human receptors. Our findings provide a structural and biophysical basis for the H5N1 adaptation to acquire human, but maintain avian, receptor-binding properties.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Structural and functional characterization of neuraminidase-like molecule N10 derived from bat influenza A virus

Qing Li; Xiaoman Sun; Zhixin Li; Yue Liu; Christopher J. Vavricka; Jianxun Qi; George F. Gao

The recent discovery of the unique genome of influenza virus H17N10 in bats raises considerable doubt about the origin and evolution of influenza A viruses. It also identifies a neuraminidase (NA)-like protein, N10, that is highly divergent from the nine other well-established serotypes of influenza A NA (N1–N9). The structural elucidation and functional characterization of influenza NAs have illustrated the complexity of NA structures, thus raising a key question as to whether N10 has a special structure and function. Here the crystal structure of N10, derived from influenza virus A/little yellow-shouldered bat/Guatemala/153/2009 (H17N10), was solved at a resolution of 2.20 Å. Overall, the structure of N10 was found to be similar to that of the other known influenza NA structures. In vitro enzymatic assays demonstrated that N10 lacks canonical NA activity. A detailed structural analysis revealed dramatic alterations of the conserved active site residues that are unfavorable for the binding and cleavage of terminally linked sialic acid receptors. Furthermore, an unusual 150-loop (residues 147–152) was observed to participate in the intermolecular polar interactions between adjacent N10 molecules of the N10 tetramer. Our study of influenza N10 provides insight into the structure and function of the sialidase superfamily and sheds light on the molecular mechanism of bat influenza virus infection.


Science Translational Medicine | 2016

Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus

Qihui Wang; Hong Yang; X Liu; Lianpan Dai; T Ma; Jianxun Qi; G Wong; R Peng; S Liu; Jia Li; S Li; J Song; Jing Liu; Jianhua(何建华) He; H Yuan; Y Xiong; Y Liao; J Yang; Zhou Tong; B.D Griffin; Yuhai Bi; Mifang Liang; Xiao-Ning Xu; C Qin; G Cheng; Xiuqing Zhang; P Wang; Xiangguo Qiu; Gary P. Kobinger; Yi Shi

Zika virus–specific antibodies isolated from a single infected patient show postexposure protection in mice and reveal targets for therapy. Stopping Zika virus in its tracks Zika virus is a global concern because of its association with fetal microcephaly and neurological complications, and there are no approved countermeasures. In new work, Wang et al. isolated 13 antibodies from a patient infected with Zika virus, two of which (Z3L1 and Z23) showed potent neutralizing activity without cross-reactivity to dengue virus strains 1 to 4. Moreover, the Z3L1 and Z23 antibodies conferred postexposure protection against Zika virus in a murine model. Structural studies indicated that the antibodies bound to different viral epitopes, suggesting that these antibodies could be used as a therapeutic cocktail. The 2015–2016 outbreak of Zika virus (ZIKV) disease has affected many countries and is a major public health concern. ZIKV is associated with fetal microcephaly and neurological complications, and countermeasures are needed to treat and prevent ZIKV infection. We report the isolation of 13 specific human monoclonal antibodies from a single patient infected with ZIKV. Two of the isolated antibodies (Z23 and Z3L1) demonstrated potent ZIKV-specific neutralization in vitro without binding or neutralizing activity against strains 1 to 4 of dengue virus, the closest relative to ZIKV. These two antibodies provided postexposure protection to mice in vivo. Structural studies revealed that Z23 and Z3L1 bound to tertiary epitopes in envelope protein domain I, II, or III, indicating potential targets for ZIKV-specific therapy. Our results suggest the potential of antibody-based therapeutics and provide a structure-based rationale for the design of future ZIKV-specific vaccines.


Nature Structural & Molecular Biology | 2016

Zika virus NS1 structure reveals diversity of electrostatic surfaces among flaviviruses

Hao Song; Jianxun Qi; Joel Haywood; Yi Shi; George F. Gao

The association of Zika virus (ZIKV) infections with microcephaly has resulted in an ongoing public-health emergency. Here we report the crystal structure of a C-terminal fragment of ZIKV nonstructural protein 1 (NS1), a major host-interaction molecule that functions in flaviviral replication, pathogenesis and immune evasion. Comparison with West Nile and dengue virus NS1 structures reveals conserved features but diverse electrostatic characteristics at host-interaction interfaces, thus possibly implying different modes of flavivirus pathogenesis.

Collaboration


Dive into the Jianxun Qi's collaboration.

Top Co-Authors

Avatar

George F. Gao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yi Shi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jinghua Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Feng Gao

Linköping University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Liu

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Hao Song

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qihui Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Wu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge