Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinghua Yan is active.

Publication


Featured researches published by Jinghua Yan.


PLOS ONE | 2007

Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark.

Kegong Tian; Xiuling Yu; Tiezhu Zhao; Youjun Feng; Zhen Cao; Chuanbin Wang; Yan Hu; Xizhao Chen; Dongmei Hu; Xinsheng Tian; Di Liu; Shuo Zhang; Xiaoyu Deng; Yinqiao Ding; Lu-Lu Yang; Yunxia Zhang; Haixia Xiao; Mingming Qiao; Bin-Bin Wang; Lili Hou; Xiaoying Wang; Xinyan Yang; Liping Kang; Ming Sun; Ping Jin; Shujuan Wang; Yoshihiro Kitamura; Jinghua Yan; George F. Gao

Porcine reproductive and respiratory syndrome (PRRS) is a severe viral disease in pigs, causing great economic losses worldwide each year. The causative agent of the disease, PRRS virus (PRRSV), is a member of the family Arteriviridae. Here we report our investigation of the unparalleled large-scale outbreaks of an originally unknown, but so-called “high fever” disease in China in 2006 with the essence of PRRS, which spread to more than 10 provinces (autonomous cities or regions) and affected over 2,000,000 pigs with about 400,000 fatal cases. Different from the typical PRRS, numerous adult sows were also infected by the “high fever” disease. This atypical PRRS pandemic was initially identified as a hog cholera-like disease manifesting neurological symptoms (e.g., shivering), high fever (40–42°C), erythematous blanching rash, etc. Autopsies combined with immunological analyses clearly showed that multiple organs were infected by highly pathogenic PRRSVs with severe pathological changes observed. Whole-genome analysis of the isolated viruses revealed that these PRRSV isolates are grouped into Type II and are highly homologous to HB-1, a Chinese strain of PRRSV (96.5% nucleotide identity). More importantly, we observed a unique molecular hallmark in these viral isolates, namely a discontinuous deletion of 30 amino acids in nonstructural protein 2 (NSP2). Taken together, this is the first comprehensive report documenting the 2006 epidemic of atypical PRRS outbreak in China and identifying the 30 amino-acid deletion in NSP2, a novel determining factor for virulence which may be implicated in the high pathogenicity of PRRSV, and will stimulate further study by using the infectious cDNA clone technique.


The Lancet | 2013

Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses

Di Liu; Weifeng Shi; Yi Shi; Dayan Wang; Haixia Xiao; Wei Li; Yuhai Bi; Ying Wu; Xianbin Li; Jinghua Yan; Wenjun Liu; Guoping Zhao; Weizhong Yang; Wang Y; Juncai Ma; Yuelong Shu; Fumin Lei; George F. Gao

BACKGROUND On March 30, 2013, a novel avian influenza A H7N9 virus that infects human beings was identified. This virus had been detected in six provinces and municipal cities in China as of April 18, 2013. We correlated genomic sequences from avian influenza viruses with ecological information and did phylogenetic and coalescent analyses to extrapolate the potential origins of the virus and possible routes of reassortment events. METHODS We downloaded H7N9 virus genome sequences from the Global Initiative on Sharing Avian Influenza Data (GISAID) database and public sequences used from the Influenza Virus Resource. We constructed phylogenetic trees and did 1000 bootstrap replicates for each tree. Two rounds of phylogenetic analyses were done. We used at least 100 closely related sequences for each gene to infer the overall topology, removed suspicious sequences from the trees, and focused on the closest clades to the novel H7N9 viruses. We compared our tree topologies with those from a bayesian evolutionary analysis by sampling trees (BEAST) analysis. We used the bayesian Markov chain Monte Carlo method to jointly estimate phylogenies, divergence times, and other evolutionary parameters for all eight gene fragments. We used sequence alignment and homology-modelling methods to study specific mutations regarding phenotypes, specifically addressing the human receptor binding properties. FINDINGS The novel avian influenza A H7N9 virus originated from multiple reassortment events. The HA gene might have originated from avian influenza viruses of duck origin, and the NA gene might have transferred from migratory birds infected with avian influenza viruses along the east Asian flyway. The six internal genes of this virus probably originated from two different groups of H9N2 avian influenza viruses, which were isolated from chickens. Detailed analyses also showed that ducks and chickens probably acted as the intermediate hosts leading to the emergence of this virulent H7N9 virus. Genotypic and potential phenotypic differences imply that the isolates causing this outbreak form two separate subclades. INTERPRETATION The novel avian influenza A H7N9 virus might have evolved from at least four origins. Diversity among isolates implies that the H7N9 virus has evolved into at least two different lineages. Unknown intermediate hosts involved might be implicated, extensive global surveillance is needed, and domestic-poultry-to-person transmission should be closely watched in the future. FUNDING China Ministry of Science and Technology Project 973, National Natural Science Foundation of China, China Health and Family Planning Commission, Chinese Academy of Sciences.


Nature | 2013

Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26

Guangwen Lu; Yawei Hu; Qihui Wang; Jianxun Qi; Feng Gao; Yan Li; Yanfang Zhang; Wei Zhang; Yuan Yuan; Jinku Bao; Buchang Zhang; Yi Shi; Jinghua Yan; George F. Gao

The newly emergent Middle East respiratory syndrome coronavirus (MERS-CoV) can cause severe pulmonary disease in humans, representing the second example of a highly pathogenic coronavirus, the first being SARS-CoV. CD26 (also known as dipeptidyl peptidase 4, DPP4) was recently identified as the cellular receptor for MERS-CoV. The engagement of the MERS-CoV spike protein with CD26 mediates viral attachment to host cells and virus–cell fusion, thereby initiating infection. Here we delineate the molecular basis of this specific interaction by presenting the first crystal structures of both the free receptor binding domain (RBD) of the MERS-CoV spike protein and its complex with CD26. Furthermore, binding between the RBD and CD26 is measured using real-time surface plasmon resonance with a dissociation constant of 16.7 nM. The viral RBD is composed of a core subdomain homologous to that of the SARS-CoV spike protein, and a unique strand-dominated external receptor binding motif that recognizes blades IV and V of the CD26 β-propeller. The atomic details at the interface between the two binding entities reveal a surprising protein–protein contact mediated mainly by hydrophilic residues. Sequence alignment indicates, among betacoronaviruses, a possible structural conservation for the region homologous to the MERS-CoV RBD core, but a high variation in the external receptor binding motif region for virus-specific pathogenesis such as receptor recognition.


PLOS ONE | 2007

A Glimpse of Streptococcal Toxic Shock Syndrome from Comparative Genomics of S. suis 2 Chinese Isolates

Chen Chen; Jiaqi Tang; Wei Dong; Changjun Wang; Youjun Feng; Jing Wang; Feng Zheng; Xiuzhen Pan; Di Liu; Ming Li; Yajun Song; Xinxing Zhu; Haibo Sun; Tao Feng; Zhaobiao Guo; Aiping Ju; Junchao Ge; Yaqing Dong; Wen Sun; Yongqiang Jiang; Jun Wang; Jinghua Yan; Huanming Yang; Xiaoning Wang; George F. Gao; Ruifu Yang; Jian Wang; Jun Yu

Background Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen, causing more than 200 cases of severe human infection worldwide, with the hallmarks of meningitis, septicemia, arthritis, etc. Very recently, SS2 has been recognized as an etiological agent for streptococcal toxic shock syndrome (STSS), which was originally associated with Streptococcus pyogenes (GAS) in Streptococci. However, the molecular mechanisms underlying STSS are poorly understood. Methods and Findings To elucidate the genetic determinants of STSS caused by SS2, whole genome sequencing of 3 different Chinese SS2 strains was undertaken. Comparative genomics accompanied by several lines of experiments, including experimental animal infection, PCR assay, and expression analysis, were utilized to further dissect a candidate pathogenicity island (PAI). Here we show, for the first time, a novel molecular insight into Chinese isolates of highly invasive SS2, which caused two large-scale human STSS outbreaks in China. A candidate PAI of ∼89 kb in length, which is designated 89K and specific for Chinese SS2 virulent isolates, was investigated at the genomic level. It shares the universal properties of PAIs such as distinct GC content, consistent with its pivotal role in STSS and high virulence. Conclusions To our knowledge, this is the first PAI candidate from S. suis worldwide. Our finding thus sheds light on STSS triggered by SS2 at the genomic level, facilitates further understanding of its pathogenesis and points to directions of development on some effective strategies to combat highly pathogenic SS2 infections.


Science | 2013

Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses.

Yi Shi; Wei Zhang; Fei Wang; Jianxun Qi; Ying Wu; Hao Song; Feng Gao; Yuhai Bi; Yanfang Zhang; Zheng Fan; Cheng-Feng Qin; Honglei Sun; Jinhua Liu; Joel Haywood; Wenjun Liu; Weimin Gong; Dayan Wang; Yuelong Shu; Wang Y; Jinghua Yan; George F. Gao

Two Viruses to Bind Structural studies of two different H7N9 influenza viruses isolated from humans—A/Shanghai/1/2013 and A/Anhui/1/2013—which have different amino acid sequences in the receptor binding site, provide data indicating that the virus is in transition with respect to host adaptation. The Shanghai virus was one of the first isolated in humans that binds avian receptor glycans with high affinity, but binds poorly to human receptors. However, the later Anhui isolates can bind both avian and human receptors at high affinity. Shi et al. (p. 243, published online 5 September) show that four hydrophobic mutations contribute to acquisition of affinity for the human receptor by the virus hemagglutinin (HA) and confirm this effect in binding studies with virus particles. Further comparison of a mutant H7N9 A/Anhui/1/2013 HA with the bird flu H5N1 virus revealed the significance of some of the naturally occurring changes observed in circulating H7N9 viruses, which helps to explain how these viruses have been able to cause many severe human infections in a short time. Four amino acids in the H7N9 influenza virus binding site provide a hydrophobic environment for human receptors. An avian-origin human-infecting influenza (H7N9) virus was recently identified in China. We have evaluated the viral hemagglutinin (HA) receptor–binding properties of two human H7N9 isolates, A/Shanghai/1/2013 (SH-H7N9) (containing the avian-signature residue Gln226) and A/Anhui/1/2013 (AH-H7N9) (containing the mammalian-signature residue Leu226). We found that SH-H7N9 HA preferentially binds the avian receptor analog, whereas AH-H7N9 HA binds both avian and human receptor analogs. Furthermore, an AH-H7N9 mutant HA (Leu226 → Gln) was found to exhibit dual receptor-binding property, indicating that other amino acid substitutions contribute to the receptor-binding switch. The structures of SH-H7N9 HA, AH-H7N9 HA, and its mutant in complex with either avian or human receptor analogs show how AH-H7N9 can bind human receptors while still retaining the avian receptor–binding property.


Nature Structural & Molecular Biology | 2010

The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site

Qing Li; Jianxun Qi; Wei Zhang; Christopher J. Vavricka; Yi Shi; Jinhua Wei; Enguang Feng; Jingshan Shen; Ji-Long Chen; Di Liu; Jianhua He; Jinghua Yan; Hong Liu; Hualiang Jiang; Maikun Teng; Xuebing Li; George F. Gao

Influenza A virus neuraminidase can be classified into groups 1 and 2 on the basis of its primary structure. The main structural feature of group 1 neuraminidase is an extra cavity in the active site, the 150-cavity. Here we present the crystal structure of neuraminidase from the 2009 pandemic H1N1 influenza strain. In contrast to other characterized N1 neuraminidases, which are all members of group 1, 2009 H1N1 neuraminidase does not have a 150-cavity.


Journal of Clinical Investigation | 2009

Human four-and-a-half LIM family members suppress tumor cell growth through a TGF-β–like signaling pathway

Lihua Ding; Zhaoyun Wang; Jinghua Yan; Xiao Yang; Aijun Liu; Weiyi Qiu; Jianhua Zhu; Juqiang Han; Hao Zhang; Jing Lin; Long Cheng; Xi Qin; Chang Niu; Bin Yuan; Xiaohui Wang; Cui Zhu; Yan Zhou; Jiezhi Li; Haifeng Song; Cuifen Huang; Qinong Ye

The four-and-a-half LIM (FHL) proteins belong to a family of LIM-only proteins that regulate cell proliferation, differentiation, and apoptosis. The exact functions of each FHL protein in cancer development and progression remain unknown. Here we report that FHL1, FHL2, and FHL3 physically and functionally interact with Smad2, Smad3, and Smad4, important regulators of cancer development and progression, in a TGF-beta-independent manner. Casein kinase 1delta, but not the TGF-beta receptor, was required for the FHL-mediated TGF-beta-like responses, including increased phosphorylation of Smad2/3, interaction of Smad2/3 and Smad4, nuclear accumulation of Smad proteins, activation of the tumor suppressor gene p21, and repression of the oncogene c-myc. FHL1-3 inhibited anchorage-dependent and -independent growth of a human hepatoma cell line in vitro and tumor formation in nude mice. Further analysis of clinical samples revealed that FHL proteins are often downregulated in hepatocellular carcinomas and that this correlates with decreased TGF-beta-like responses. By establishing a link between FHL proteins and Smad proteins, this study identifies what we believe to be a novel TGF-beta-like signaling pathway and indicates that FHL proteins may be useful molecular targets for cancer therapy.


Nature Communications | 2014

Dynamic reassortments and genetic heterogeneity of the human-infecting influenza A (H7N9) virus

Lunbiao Cui; Di Liu; Weifeng Shi; Jingcao Pan; Xian Qi; Xianbin Li; Xiling Guo; Minghao Zhou; Wei Li; Jun Li; Joel Haywood; Haixia Xiao; Xinfen Yu; Xiaoying Pu; Ying Wu; Huiyan Yu; Kangchen Zhao; Yefei Zhu; Bin Wu; Tao Jin; Zhiyang Shi; Fenyang Tang; Fengcai Zhu; Qinglan Sun; Linhuan Wu; Ruifu Yang; Jinghua Yan; Fumin Lei; Baoli Zhu; Wenjun Liu

Influenza A (H7N9) virus has been causing human infections in China since February 2013, raising serious concerns of potential pandemics. Previous studies demonstrate that human infection is directly linked to live animal markets, and that the internal genes of the virus are derived from H9N2 viruses circulating in the Yangtze River Delta area in Eastern China. Here following analysis of 109 viruses, we show a much higher genetic heterogeneity of the H7N9 viruses than previously reported, with a total of 27 newly designated genotypes. Phylogenetic and genealogical inferences reveal that genotypes G0 and G2.6 dominantly co-circulate within poultry, with most human isolates belonging to the genotype G0. G0 viruses are also responsible for the inter- and intra-province transmissions, leading to the genesis of novel genotypes. These observations suggest the province-specific H9N2 virus gene pools increase the genetic diversity of H7N9 via dynamic reassortments and also imply that G0 has not gained overwhelming fitness and the virus continues to undergo reassortment.


Cell Host & Microbe | 2014

Bat Origins of MERS-CoV Supported by Bat Coronavirus HKU4 Usage of Human Receptor CD26

Qihui Wang; Jianxun Qi; Yuan Yuan; Yifang Xuan; Pengcheng Han; Yuhua Wan; Wei Ji; Yan Li; Ying Wu; Jianwei Wang; Aikichi Iwamoto; Patrick C. Y. Woo; Kwok-Yung Yuen; Jinghua Yan; Guangwen Lu; George F. Gao

Summary The recently reported Middle East respiratory syndrome coronavirus (MERS-CoV) is phylogenetically closely related to the bat coronaviruses (BatCoVs) HKU4 and HKU5. However, the evolutionary pathway of MERS-CoV is still unclear. A receptor binding domain (RBD) in the MERS-CoV envelope-embedded spike protein specifically engages human CD26 (hCD26) to initiate viral entry. The high sequence identity in the viral spike protein prompted us to investigate if HKU4 and HKU5 can recognize hCD26 for cell entry. We found that HKU4-RBD, but not HKU5-RBD, binds to hCD26, and pseudotyped viruses embedding HKU4 spike can infect cells via hCD26 recognition. The structure of the HKU4-RBD/hCD26 complex revealed a hCD26-binding mode similar overall to that observed for MERS-RBD. HKU4-RBD, however, is less adapted to hCD26 than MERS-RBD, explaining its lower affinity for receptor binding. Our findings support a bat origin for MERS-CoV and indicate the need for surveillance of HKU4-related viruses in bats.


Protein & Cell | 2010

Crystal structure of the swine-origin A (H1N1)-2009 influenza A virus hemagglutinin (HA) reveals similar antigenicity to that of the 1918 pandemic virus

Wei Zhang; Jianxun Qi; Yi Shi; Qing Li; Feng Gao; Yeping Sun; Xishan Lu; Qiong Lu; Christopher J. Vavricka; Di Liu; Jinghua Yan; George F. Gao

Influenza virus is the causative agent of the seasonal and occasional pandemic flu. The current H1N1 influenza pandemic, announced by the WHO in June 2009, is highly contagious and responsible for global economic losses and fatalities. Although the H1N1 gene segments have three origins in terms of host species, the virus has been named swine-origin influenza virus (S-OIV) due to a predominant swine origin. 2009 S-OIV has been shown to highly resemble the 1918 pandemic virus in many aspects. Hemagglutinin is responsible for the host range and receptor binding of the virus and is therefore a primary indicator for the potential of infection. Primary sequence analysis of the 2009 S-OIV hemagglutinin (HA) reveals its closest relationship to that of the 1918 pandemic influenza virus, however, analysis at the structural level is necessary to critically assess the functional significance. In this report, we report the crystal structure of soluble hemagglutinin H1 (09H1) at 2.9 Å, illustrating that the 09H1 is very similar to the 1918 pandemic HA (18H1) in overall structure and the structural modules, including the five defined antiboby (Ab)-binding epitopes. Our results provide an explanation as to why sera from the survivors of the 1918 pandemics can neutralize the 2009 S-OIV, and people born around the 1918 are resistant to the current pandemic, yet younger generations are more susceptible to the 2009 pandemic.

Collaboration


Dive into the Jinghua Yan's collaboration.

Top Co-Authors

Avatar

George F. Gao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianxun Qi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yi Shi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qihui Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenjun Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Haixia Xiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ying Wu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yuhai Bi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Di Liu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge