Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianyang Xia is active.

Publication


Featured researches published by Jianyang Xia.


New Phytologist | 2008

Global response patterns of terrestrial plant species to nitrogen addition.

Jianyang Xia; Shiqiang Wan

Better understanding of the responses of terrestrial plant species under global nitrogen (N) enrichment is critical for projection of changes in structure, functioning, and service of terrestrial ecosystems. Here, a meta-analysis of data from 304 studies was carried out to reveal the general response patterns of terrestrial plant species to the addition of N. Across 456 terrestrial plant species included in the analysis, biomass and N concentration were increased by 53.6 and 28.5%, respectively, under N enrichment. However, the N responses were dependent upon plant functional types, with significantly greater biomass increases in herbaceous than in woody species. Stimulation of plant biomass by the addition of N was enhanced when other resources were improved. In addition, the N responses of terrestrial plants decreased with increasing latitude and increased with annual precipitation. Dependence of the N responses of terrestrial plants on biological realms, functional types, tissues, other resources, and climatic factors revealed in this study can help to explain changes in species composition, diversity, community structure and ecosystem functioning under global N enrichment. These findings are critical in improving model simulation and projection of terrestrial carbon sequestration and its feedbacks to global climate change, especially when progressive N limitation is taken into consideration.


New Phytologist | 2010

Climate warming and biomass accumulation of terrestrial plants: a meta‐analysis

Delu Lin; Jianyang Xia; Shiqiang Wan

• Growth of terrestrial plant species and functional types (PFTs) in response to climate warming determines future dynamics of terrestrial vegetation. • Here, a meta-analysis was conducted with data collected from 127 publications to reveal general patterns of biomass responses of terrestrial plants to warming. • Warming significantly increased biomass by 12.3% (with a 95% confidence interval of 8.4-16.3%) across all the terrestrial plants included. However, biomass responses were dependent upon PFTs, with significantly greater stimulation of woody (+26.7%) than herbaceous species (+5.2%). Warming effects on biomass showed quadratic relationships with both latitude and mean annual temperature, but did not change with mean annual precipitation or experimental duration. In addition, the other treatments, including CO(2) enrichment, nitrogen addition, drought and water addition, did not alter warming responses of plant biomass. • Dependence of the terrestrial plant biomass responses to warming upon PFTs, geographic and climatic factors as well as warming magnitudes will have consequent influences on community composition and structure, vegetation dynamics, biodiversity and ecosystem functioning in a warmer world. Our findings of functional type-specific responses of terrestrial plants are critical for improving predictions of climate-terrestrial carbon feedbacks.


Ecology | 2009

Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration

Shiqiang Wan; Jianyang Xia; Shuli Niu

A mechanistic understanding of the carbon (C) cycle-climate change feedback is essential for projecting future states of climate and ecosystems. Here we report a novel field mechanism and evidence supporting the hypothesis that nocturnal warming in a temperate steppe ecosystem in northern China can result in a minor C sink instead of a C source as models have predicted. Nocturnal warming increased leaf respiration of two dominant grass species by 36.3%, enhanced consumption of carbohydrates in the leaves (72.2% and 60.5% for sugar and starch, respectively), and consequently stimulated plant photosynthesis by 19.8% in the subsequent days. Our experimental findings confirm previous observations of nocturnal warming stimulating plant photosynthesis through increased draw-down of leaf carbohydrates at night. The enhancement of plant photosynthesis overcompensated the increased C loss via plant respiration under nocturnal warming and shifted the steppe ecosystem from a minor C source (1.87 g C x m(-2) x yr(-1)) to a C sink (21.72 g C x m(-2) x yr(-1)) across the three growing seasons from 2006 to 2008. Given greater increases in daily minimum than maximum temperature in many regions, plant photosynthetic overcompensation may partially serve as a negative feedback mechanism for terrestrial biosphere to climate warming.


Global Biogeochemical Cycles | 2016

Toward more realistic projections of soil carbon dynamics by Earth system models

Yiqi Luo; Anders Ahlström; Steven D. Allison; N.H. Batjes; Victor Brovkin; Nuno Carvalhais; Adrian Chappell; Philippe Ciais; Eric A. Davidson; Adien Finzi; Katerina Georgiou; Bertrand Guenet; Oleksandra Hararuk; Jennifer W. Harden; Yujie He; Francesca M. Hopkins; Lifen Jiang; C. Koven; Robert B. Jackson; Chris D. Jones; Mark J. Lara; J. K. Liang; A. David McGuire; William J. Parton; Changhui Peng; James T. Randerson; Alejandro Salazar; Carlos A. Sierra; Matthew J. Smith; Hanqin Tian

Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.


Global Change Biology | 2013

Nitrogen deposition weakens plant–microbe interactions in grassland ecosystems

Cunzheng Wei; Qiang Yu; Edith Bai; Qi Li; Jianyang Xia; Paul Kardol; Wenju Liang; Zhengwen Wang; Xingguo Han

Soil carbon (C) and nitrogen (N) stoichiometry is a main driver of ecosystem functioning. Global N enrichment has greatly changed soil C : N ratios, but how altered resource stoichiometry influences the complexity of direct and indirect interactions among plants, soils, and microbial communities has rarely been explored. Here, we investigated the responses of the plant-soil-microbe system to multi-level N additions and the role of dissolved organic carbon (DOC) and inorganic N stoichiometry in regulating microbial biomass in semiarid grassland in northern China. We documented a significant positive correlation between DOC and inorganic N across the N addition gradient, which contradicts the negative nonlinear correlation between nitrate accrual and DOC availability commonly observed in natural ecosystems. Using hierarchical structural equation modeling, we found that soil acidification resulting from N addition, rather than changes in the plant community, was most closely related to shifts in soil microbial community composition and decline of microbial respiration. These findings indicate a down-regulating effect of high N availability on plant-microbe interactions. That is, with the limiting factor for microbial biomass shifting from resource stoichiometry to soil acidity, N enrichment weakens the bottom-up control of soil microorganisms by plant-derived C sources. These results highlight the importance of integratively studying the plant-soil-microbe system in improving our understanding of ecosystem functioning under conditions of global N enrichment.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Joint control of terrestrial gross primary productivity by plant phenology and physiology

Jianyang Xia; Shuli Niu; Philippe Ciais; Ivan A. Janssens; Jiquan Chen; C. Ammann; Altaf Arain; Peter D. Blanken; Alessandro Cescatti; Damien Bonal; Nina Buchmann; Peter James Curtis; Shiping Chen; Jinwei Dong; Lawrence B. Flanagan; Christian Frankenberg; Teodoro Georgiadis; Christopher M. Gough; Dafeng Hui; Gerard Kiely; Jianwei Li; Magnus Lund; Vincenzo Magliulo; Barbara Marcolla; Lutz Merbold; Leonardo Montagnani; E.J. Moors; Jørgen E. Olesen; Shilong Piao; Antonio Raschi

Significance Terrestrial gross primary productivity (GPP), the total photosynthetic CO2 fixation at ecosystem level, fuels all life on land. However, its spatiotemporal variability is poorly understood, because GPP is determined by many processes related to plant phenology and physiological activities. In this study, we find that plant phenological and physiological properties can be integrated in a robust index—the product of the length of CO2 uptake period and the seasonal maximal photosynthesis—to explain the GPP variability over space and time in response to climate extremes and during recovery after disturbance. Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy–covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000–2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r2 = 0.90) and GPP recovery after a fire disturbance in South Dakota (r2 = 0.88). Additional analysis of the eddy–covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space.


Global Biogeochemical Cycles | 2015

Explicitly representing soil microbial processes in Earth system models

William R. Wieder; Steven D. Allison; Eric A. Davidson; Katerina Georgiou; Oleksandra Hararuk; Yujie He; Francesca M. Hopkins; Yiqi Luo; Matthew J. Smith; Benjamin N. Sulman; Katherine E. O. Todd-Brown; Ying-Ping Wang; Jianyang Xia; Xiaofeng Xu

©2015. American Geophysical Union. All Rights Reserved. Microbes influence soil organic matter decomposition and the long-term stabilization of carbon (C) in soils. We contend that by revising the representation of microbial processes and their interactions with the physicochemical soil environment, Earth system models (ESMs) will make more realistic global C cycle projections. Explicit representation of microbial processes presents considerable challenges due to the scale at which these processes occur. Thus, applying microbial theory in ESMs requires a framework to link micro-scale process-level understanding and measurements to macro-scale models used to make decadal- to century-long projections. Here we review the diversity, advantages, and pitfalls of simulating soil biogeochemical cycles using microbial-explicit modeling approaches. We present a roadmap for how to begin building, applying, and evaluating reliable microbial-explicit model formulations that can be applied in ESMs. Drawing from experience with traditional decomposition models, we suggest the following: (1) guidelines for common model parameters and output that can facilitate future model intercomparisons; (2) development of benchmarking and model-data integration frameworks that can be used to effectively guide, inform, and evaluate model parameterizations with data from well-curated repositories; and (3) the application of scaling methods to integrate microbial-explicit soil biogeochemistry modules within ESMs. With contributions across scientific disciplines, we feel this roadmap can advance our fundamental understanding of soil biogeochemical dynamics and more realistically project likely soil C response to environmental change at global scales.


Ecology Letters | 2016

Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle

Shuli Niu; Aimée T. Classen; Jeffrey S. Dukes; Paul Kardol; Lingli Liu; Yiqi Luo; Lindsey E. Rustad; Jian Sun; Jianwu Tang; Pamela H. Templer; R. Quinn Thomas; Dashuan Tian; Sara Vicca; Ying-Ping Wang; Jianyang Xia; Sönke Zaehle

Nitrogen (N) deposition is impacting the services that ecosystems provide to humanity. However, the mechanisms determining impacts on the N cycle are not fully understood. To explore the mechanistic underpinnings of N impacts on N cycle processes, we reviewed and synthesised recent progress in ecosystem N research through empirical studies, conceptual analysis and model simulations. Experimental and observational studies have revealed that the stimulation of plant N uptake and soil retention generally diminishes as N loading increases, while dissolved and gaseous losses of N occur at low N availability but increase exponentially and become the dominant fate of N at high loading rates. The original N saturation hypothesis emphasises sequential N saturation from plant uptake to soil retention before N losses occur. However, biogeochemical models that simulate simultaneous competition for soil N substrates by multiple processes match the observed patterns of N losses better than models based on sequential competition. To enable better prediction of terrestrial N cycle responses to N loading, we recommend that future research identifies the response functions of different N processes to substrate availability using manipulative experiments, and incorporates the measured N saturation response functions into conceptual, theoretical and quantitative analyses.


Annals of Botany | 2013

Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe

Jianyang Xia; Shiqiang Wan

BACKGROUND AND AIMS Phenology is one of most sensitive traits of plants in response to regional climate warming. Better understanding of the interactive effects between warming and other environmental change factors, such as increasing atmosphere nitrogen (N) deposition, is critical for projection of future plant phenology. METHODS A 4-year field experiment manipulating temperature and N has been conducted in a temperate steppe in northern China. Phenology, including flowering and fruiting date as well as reproductive duration, of eight plant species was monitored and calculated from 2006 to 2009. KEY RESULTS Across all the species and years, warming significantly advanced flowering and fruiting time by 0·64 and 0·72 d per season, respectively, which were mainly driven by the earliest species (Potentilla acaulis). Although N addition showed no impact on phenological times across the eight species, it significantly delayed flowering time of Heteropappus altaicus and fruiting time of Agropyron cristatum. The responses of flowering and fruiting times to warming or N addition are coupled, leading to no response of reproductive duration to warming or N addition for most species. Warming shortened reproductive duration of Potentilla bifurca but extended that of Allium bidentatum, whereas N addition shortened that of A. bidentatum. No interactive effect between warming and N addition was found on any phenological event. Such additive effects could be ascribed to the species-specific responses of plant phenology to warming and N addition. CONCLUSIONS The results suggest that the warming response of plant phenology is larger in earlier than later flowering species in temperate grassland systems. The effects of warming and N addition on plant phenology are independent of each other. These findings can help to better understand and predict the response of plant phenology to climate warming concurrent with other global change driving factors.


PLOS ONE | 2013

Nitrogen Addition and Warming Independently Influence the Belowground Micro-Food Web in a Temperate Steppe

Qi Li; Huahua Bai; Wenju Liang; Jianyang Xia; Shiqiang Wan; Wim H. van der Putten

Climate warming and atmospheric nitrogen (N) deposition are known to influence ecosystem structure and functioning. However, our understanding of the interactive effect of these global changes on ecosystem functioning is relatively limited, especially when it concerns the responses of soils and soil organisms. We conducted a field experiment to study the interactive effects of warming and N addition on soil food web. The experiment was established in 2006 in a temperate steppe in northern China. After three to four years (2009–2010), we found that N addition positively affected microbial biomass and negatively influenced trophic group and ecological indices of soil nematodes. However, the warming effects were less obvious, only fungal PLFA showed a decreasing trend under warming. Interestingly, the influence of N addition did not depend on warming. Structural equation modeling analysis suggested that the direct pathway between N addition and soil food web components were more important than the indirect connections through alterations in soil abiotic characters or plant growth. Nitrogen enrichment also affected the soil nematode community indirectly through changes in soil pH and PLFA. We conclude that experimental warming influenced soil food web components of the temperate steppe less than N addition, and there was little influence of warming on N addition effects under these experimental conditions.

Collaboration


Dive into the Jianyang Xia's collaboration.

Top Co-Authors

Avatar

Shiqiang Wan

Environmental Change Institute

View shared research outputs
Top Co-Authors

Avatar

Shuli Niu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zheng Shi

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

J. K. Liang

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

Lifen Jiang

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying-Ping Wang

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Xuhui Zhou

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Xingjie Lu

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Dejun Li

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge