Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shiqiang Wan is active.

Publication


Featured researches published by Shiqiang Wan.


Nature | 2001

Acclimatization of soil respiration to warming in a tall grass prairie.

Yiqi Luo; Shiqiang Wan; Dafeng Hui; Linda L. Wallace

The latest report by the Intergovernmental Panel on Climate Change (IPCC) predicts a 1.4–5.8 °C average increase in the global surface temperature over the period 1990 to 2100 (ref. 1). These estimates of future warming are greater than earlier projections, which is partly due to incorporation of a positive feedback. This feedback results from further release of greenhouse gases from terrestrial ecosystems in response to climatic warming. The feedback mechanism is usually based on the assumption that observed sensitivity of soil respiration to temperature under current climate conditions would hold in a warmer climate. However, this assumption has not been carefully examined. We have therefore conducted an experiment in a tall grass prairie ecosystem in the US Great Plains to study the response of soil respiration (the sum of root and heterotrophic respiration) to artificial warming of about 2 °C. Our observations indicate that the temperature sensitivity of soil respiration decreases—or acclimatizes—under warming and that the acclimatization is greater at high temperatures. This acclimatization of soil respiration to warming may therefore weaken the positive feedback between the terrestrial carbon cycle and climate.


Ecological Applications | 2001

FIRE EFFECTS ON NITROGEN POOLS AND DYNAMICS IN TERRESTRIAL ECOSYSTEMS: A META-ANALYSIS

Shiqiang Wan; Dafeng Hui; Yiqi Luo

A comprehensive and quantitative evaluation of the effects of fire on eco- system nitrogen (N) is urgently needed for directing future fire research and management. This study used a meta-analysis method to synthesize up to 185 data sets from 87 studies published from 1955 to 1999. Six N response variables related to fire were examined: fuel N amount (FNA) and concentration (FNC), soil N amount (SNA) and concentration (SNC), and soil ammonium (NH4 1 ) and nitrate (NO3 2 ) pools. When all comparisons (fire treatment vs. control) were considered together, fire significantly reduced FNA (58%), increased soil NH4 1 (94%) and NO3 2 (152%), and had no significant influences on FNC, SNA, and SNC. The responses of N to fire varied with different independent variables, which were vegetation type, fire type, fuel type, fuel consumption amount, fuel consumption percentage, time after fire, and soil sampling depth. The response of FNA to fire was significantly influenced by vegetation type, fuel type, and fuel consumption amount and percentage. The reduction in FNA was linearly correlated with fuel consumption percentage (r 2 5 0.978). The response of FNC to fire was only affected by fuel type. None of the seven independent variables had any effect on SNA. The responses of SNC, NH4 1 , and NO3 2 depend on soil sampling depth. The responses of both NH4 1 and NO3 2 to fire were significantly affected by fire type and time after fire but had different temporal patterns. The soil NH4 1 pool increased ap- proximately twofold immediately after fire, then gradually declined to the prefire level after one year. The fire-induced increase in the soil NO 3 2 pool was small (24%) immediately after fire, reached a maximum of approximately threefold of the prefire level within 0.5- 1 year after fire, and then declined. This study has identified the general patterns of the responses of ecosystem N that occur for several years after fire. A key research need relevant to fire management is to understand how the short-term responses of N to fire influence the function and structure of terrestrial ecosystems in the long term.


New Phytologist | 2008

Global response patterns of terrestrial plant species to nitrogen addition.

Jianyang Xia; Shiqiang Wan

Better understanding of the responses of terrestrial plant species under global nitrogen (N) enrichment is critical for projection of changes in structure, functioning, and service of terrestrial ecosystems. Here, a meta-analysis of data from 304 studies was carried out to reveal the general response patterns of terrestrial plant species to the addition of N. Across 456 terrestrial plant species included in the analysis, biomass and N concentration were increased by 53.6 and 28.5%, respectively, under N enrichment. However, the N responses were dependent upon plant functional types, with significantly greater biomass increases in herbaceous than in woody species. Stimulation of plant biomass by the addition of N was enhanced when other resources were improved. In addition, the N responses of terrestrial plants decreased with increasing latitude and increased with annual precipitation. Dependence of the N responses of terrestrial plants on biological realms, functional types, tissues, other resources, and climatic factors revealed in this study can help to explain changes in species composition, diversity, community structure and ecosystem functioning under global N enrichment. These findings are critical in improving model simulation and projection of terrestrial carbon sequestration and its feedbacks to global climate change, especially when progressive N limitation is taken into consideration.


Plant and Soil | 2002

Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem

Xiaozhong Liu; Shiqiang Wan; Bo Su; Dafeng Hui; Yiqi Luo

Although CO2 efflux plays a critical role in carbon exchange between the biosphere and atmosphere, our understanding of its regulation by soil moisture is rather limited. This study was designed to examine the relationship between soil CO2 efflux and soil moisture in a natural ecosystem by taking advantage of the historically long drought period from 29 July to 21 September 2000 in the southern Central Great Plain, USA. At the end of August when soil moisture content at the top 50 mm was reduced to less than 50 g kg−1 gravimetrically, we applied 8 levels of water treatments (simulated to rainfall of 0, 10, 25, 50, 100, 150, 200, and 300 mm) with three replicates to 24 plots in a Tallgrass Prairie ecosystem in Central Oklahoma, USA. In order to quantify root-free soil CO2 efflux, we applied the same 8 levels of water treatments to 24 500-mm soil columns using soil from field adjacent to the experimental plots. We characterized dynamic patterns of soil moisture and soil CO2 efflux over the experimental period of 21 days. Both soil moisture content and CO2 efflux showed dramatic increases immediately after the water addition, followed by a gradual decline. The time courses in response to water treatments are well described by Y=Y0+ate−bt, where Y is either soil moisture or CO2 efflux, t is time, Y0, a, and b are coefficients. Among the 8 water treatments, the maximal soil CO2 efflux rate occurred at the 50 mm water level in the field and 100 mm in the root-free soil 1 day after the treatment. The maximal soil CO2 efflux gradually shifted to higher water levels as the experiment continued. We found the relationship between soil CO2 efflux and soil moisture using the data from the 21-day experiment was highly scattered, suggesting complex mechanisms determining soil CO2 efflux by soil moisture.


Nature | 2013

Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation

Shushi Peng; Shilong Piao; Philippe Ciais; Ranga B. Myneni; Anping Chen; F. Chevallier; A. J. Dolman; Ivan A. Janssens; Josep Peñuelas; Gengxin Zhang; Sara Vicca; Shiqiang Wan; Shiping Wang; Hui Zeng

Temperature data over the past five decades show faster warming of the global land surface during the night than during the day. This asymmetric warming is expected to affect carbon assimilation and consumption in plants, because photosynthesis in most plants occurs during daytime and is more sensitive to the maximum daily temperature, Tmax, whereas plant respiration occurs throughout the day and is therefore influenced by both Tmax and the minimum daily temperature, Tmin. Most studies of the response of terrestrial ecosystems to climate warming, however, ignore this asymmetric forcing effect on vegetation growth and carbon dioxide (CO2) fluxes. Here we analyse the interannual covariations of the satellite-derived normalized difference vegetation index (NDVI, an indicator of vegetation greenness) with Tmax and Tmin over the Northern Hemisphere. After removing the correlation between Tmax and Tmin, we find that the partial correlation between Tmax and NDVI is positive in most wet and cool ecosystems over boreal regions, but negative in dry temperate regions. In contrast, the partial correlation between Tmin and NDVI is negative in boreal regions, and exhibits a more complex behaviour in dry temperate regions. We detect similar patterns in terrestrial net CO2 exchange maps obtained from a global atmospheric inversion model. Additional analysis of the long-term atmospheric CO2 concentration record of the station Point Barrow in Alaska suggests that the peak-to-peak amplitude of CO2 increased by 23 ± 11% for a +1 °C anomaly in Tmax from May to September over lands north of 51° N, but decreased by 28 ± 14% for a +1 °C anomaly in Tmin. These lines of evidence suggest that asymmetric diurnal warming, a process that is currently not taken into account in many global carbon cycle models, leads to a divergent response of Northern Hemisphere vegetation growth and carbon sequestration to rising temperatures.


New Phytologist | 2010

Climate warming and biomass accumulation of terrestrial plants: a meta‐analysis

Delu Lin; Jianyang Xia; Shiqiang Wan

• Growth of terrestrial plant species and functional types (PFTs) in response to climate warming determines future dynamics of terrestrial vegetation. • Here, a meta-analysis was conducted with data collected from 127 publications to reveal general patterns of biomass responses of terrestrial plants to warming. • Warming significantly increased biomass by 12.3% (with a 95% confidence interval of 8.4-16.3%) across all the terrestrial plants included. However, biomass responses were dependent upon PFTs, with significantly greater stimulation of woody (+26.7%) than herbaceous species (+5.2%). Warming effects on biomass showed quadratic relationships with both latitude and mean annual temperature, but did not change with mean annual precipitation or experimental duration. In addition, the other treatments, including CO(2) enrichment, nitrogen addition, drought and water addition, did not alter warming responses of plant biomass. • Dependence of the terrestrial plant biomass responses to warming upon PFTs, geographic and climatic factors as well as warming magnitudes will have consequent influences on community composition and structure, vegetation dynamics, biodiversity and ecosystem functioning in a warmer world. Our findings of functional type-specific responses of terrestrial plants are critical for improving predictions of climate-terrestrial carbon feedbacks.


Ecology | 2009

Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration

Shiqiang Wan; Jianyang Xia; Shuli Niu

A mechanistic understanding of the carbon (C) cycle-climate change feedback is essential for projecting future states of climate and ecosystems. Here we report a novel field mechanism and evidence supporting the hypothesis that nocturnal warming in a temperate steppe ecosystem in northern China can result in a minor C sink instead of a C source as models have predicted. Nocturnal warming increased leaf respiration of two dominant grass species by 36.3%, enhanced consumption of carbohydrates in the leaves (72.2% and 60.5% for sugar and starch, respectively), and consequently stimulated plant photosynthesis by 19.8% in the subsequent days. Our experimental findings confirm previous observations of nocturnal warming stimulating plant photosynthesis through increased draw-down of leaf carbohydrates at night. The enhancement of plant photosynthesis overcompensated the increased C loss via plant respiration under nocturnal warming and shifted the steppe ecosystem from a minor C source (1.87 g C x m(-2) x yr(-1)) to a C sink (21.72 g C x m(-2) x yr(-1)) across the three growing seasons from 2006 to 2008. Given greater increases in daily minimum than maximum temperature in many regions, plant photosynthetic overcompensation may partially serve as a negative feedback mechanism for terrestrial biosphere to climate warming.


Agricultural and Forest Meteorology | 2004

Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimations

Dafeng Hui; Shiqiang Wan; Bo Su; Gabriel G. Katul; Russell K. Monson; Yiqi Luo

Abstract Missing data is a ubiquitous problem in evaluating long-term experimental measurements, such as those associated with the FluxNet project, due to the equipment failures, system maintenance, power-failure, and lightning strikes among other things. To estimate annual values of net ecosystem carbon exchange (NEE), latent heat flux (LE) and sensible heat flux ( H ), such gaps in the measured data must be filled or imputed. So far, no standardized method has been accepted and the imputation methods used are largely dependent on the researchers’ choice. Here, we used multiple imputation (MI) to gap-fill the missing data for annual estimations of NEE, LE and H at three flux sites associated with the FluxNet effort. MI is a Monte Carlo technique in which the missing values are replaced by several simulated values. Each data set imputed is a complete one where the observed values are the same as those in the original data set; only the missing values are different. Thus, the normal statistical analysis (e.g. annual total calculation) can be applied to each data set separately. The results of each analysis can be recombined into one summary. We applied the MI method to eddy covariance measurements collected from Walker Branch Watershed (WBW) site (a deciduous forest), Duke site (a coniferous forest) and Niwot site (a subalpine forest). Results showed that annual estimations of NEE, LE and H by MI were comparable to other imputation methods but MI was much easier to apply because of readily available software and standard algorithms. Besides the normal statistical analyses, MI also provided confidence intervals for each estimated parameter. This confidence interval is most useful when assessing energy, water, and carbon balance closures at a given tower site. Significant differences in annual NEE, LE and H were found among years at the three AmeriFlux sites. NEE at the Niwot Ridge site was lower and LE and H were higher than at the other two sites. With the available software and realistic gap-filling capability, MI has the potential to become a standardized method to gap-fill eddy covariance flux data for annual estimations and to improve the analysis of uncertainties associated with annual estimations of NEE, LE and H from regional and global flux networks.


Gcb Bioenergy | 2009

Terrestrial carbon‐cycle feedback to climate warming: experimental evidence on plant regulation and impacts of biofuel feedstock harvest

Yiqi Luo; Rebecca A. Sherry; Xuhui Zhou; Shiqiang Wan

Feedback between global carbon (C) cycles and climate change is one of the major uncertainties in projecting future global warming. Coupled carbon–climate models all demonstrated a positive feedback between terrestrial C cycle and climate warming. The positive feedback results from decreased net primary production (NPP) in most models and increased respiratory C release by all the models under climate warming. Those modeling results present interesting hypotheses of future states of ecosystems and climate, which are yet to be tested against experimental results. In this study, we examined ecosystem C balance and its major components in a warming and clipping experiment in a North America tallgrass prairie. Infrared heaters have been used to elevate soil temperature by approximately 2 °C continuously since November 1999. Clipping once a year was to mimic hay or biofuel feedstock harvest. On average of data over 6 years from 2000 to 2005, estimated NPP under warming increased by 14% without clipping (P<0.05) and 26% with clipping (P<0.05) in comparison with that under control. Warming did not result in instantaneous increases in soil respiration in 1999 and 2000 but significantly increased it by approximately 8% without clipping (P<0.05) from 2001 to 2005. Soil respiration under warming increased by 15% with clipping (P<0.05) from 2000 to 2005. Warming‐stimulated plant biomass production, due to enhanced C4 dominance, extended growing seasons, and increased nitrogen uptake and use efficiency, offset increased soil respiration, leading to no change in soil C storage at our site. However, biofuel feedstock harvest by biomass removal resulted in significant soil C loss in the clipping and control plots but was carbon negative in the clipping and warming plots largely because of positive interactions of warming and clipping in stimulating root growth. Our results demonstrate that plant production processes play a critical role in regulation of ecosystem carbon‐cycle feedback to climate change in both the current ambient and future warmed world.


Ecology Letters | 2012

Diversity‐dependent stability under mowing and nutrient addition: evidence from a 7‐year grassland experiment

Haijun Yang; Lin Jiang; Linghao Li; Ang Li; Mingyu Wu; Shiqiang Wan

Anthropogenic perturbations may affect biodiversity and ecological stability as well as their relationships. However, diversity-stability patterns and associated mechanisms under human disturbances have rarely been explored. We conducted a 7-year field experiment examining the effects of mowing and nutrient addition on the diversity and temporal stability of herbaceous plant communities in a temperate steppe in northern China. Mowing increased population and community stability, whereas nutrient addition had the opposite effects. Stability exhibited positive relationships with species richness at population, functional group and community levels. Treatments did not alter these positive diversity-stability relationships, which were associated with the stabilising effect of species richness on component populations, species asynchrony and portfolio effects. Despite the difficulty of pinpointing causal mechanisms of diversity-stability patterns observed in nature, our results suggest that diversity may still be a useful predictor of the stability of ecosystems confronted with anthropogenic disturbances.

Collaboration


Dive into the Shiqiang Wan's collaboration.

Top Co-Authors

Avatar

Jianyang Xia

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Shuli Niu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xingguo Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Linghao Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dafeng Hui

Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Lin Jiang

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Han Hx

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mingyu Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhuwen Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Haijun Yang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge