Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianyi Xiong is active.

Publication


Featured researches published by Jianyi Xiong.


Journal of Translational Medicine | 2014

Extracellular matrix production in vitro in cartilage tissue engineering

Jie-Lin Chen; Li Duan; Weimin Zhu; Jianyi Xiong; Daping Wang

Cartilage tissue engineering is arising as a technique for the repair of cartilage lesions in clinical applications. However, fibrocartilage formation weakened the mechanical functions of the articular, which compromises the clinical outcomes. Due to the low proliferation ability, dedifferentiation property and low production of cartilage-specific extracellular matrix (ECM) of the chondrocytes, the cartilage synthesis in vitro has been one of the major limitations for obtaining high-quality engineered cartilage constructs. This review discusses cells, biomaterial scaffolds and stimulating factors that can facilitate the cartilage-specific ECM production and accumulation in the in vitro culture system. Special emphasis has been put on the factors that affect the production of ECM macromolecules such as collagen type II and proteoglycans in the review, aiming at providing new strategies to improve the quality of tissue-engineered cartilage.


Bio-medical Materials and Engineering | 2015

Evaluation of the novel three-dimensional porous poly (L-lactic acid)/nano-hydroxyapatite composite scaffold.

Jianghong Huang; Jianyi Xiong; Jianquan Liu; Weimin Zhu; Jielin Chen; Li Duan; Jufeng Zhang; Daping Wang

To determine the optimal ratio of nano-hydroxyapatite (n-HA) to polylactic acid (PLLA) in the novel three-dimensional porous PLLA/n-HA composite scaffolds, low-temperature rapid prototyping technology was employed to fabricate the composite materials with different n-HA contents. Mechanical properties and degradation behaviors of the composites were examined, and the scaffold microstructure and n-HA dispersion were observed by scanning electron microscope (SEM). Mechanical tests demonstrated that the tensile strength of the composite material gradually decreased with an increase in n-HA content. When the n-HA content reached 20 wt%, the bending strength of the composite material peaked at 138.5 MPa. SEM images demonstrated that the optimal content of n-HA was 20 wt% as the largest interconnected pore size that can be seen, with a porosity as high as 80%. In vitro degradation experiments demonstrated that the pH value of the material containing solution gradually decreased in a time-dependent manner, with a simultaneous weakening of the mechanical properties. In vitro study using rat osteoblast cells showed that the composite scaffolds were biocompatible; the 20 wt% n-HA scaffold offered particular improvement to rat osteoblast cell adhesion and proliferation compared to other compositions. It was therefore concluded that 20 wt% n-HA is the optimal nano-hydroxyapatite (n-HA) to polylactic acid (PLLA) ratio, with promise for bone tissue engineering.


Materials Science and Engineering: C | 2017

Effect of inorganic/organic ratio and chemical coupling on the performance of porous silica/chitosan hybrid scaffolds

Daming Wang; Wei Liu; Qian Feng; Chaoqun Dong; Qisong Liu; Li Duan; Jianghong Huang; Weimin Zhu; Zemeng Li; Jianyi Xiong; Yujie Liang; Jielin Chen; Rong Sun; Liming Bian; Daping Wang

Inorganic/organic hybrid scaffolds have great potential for tissue engineering applications due to controllable mechanical properties and tailorable biodegradation. Here, silica/chitosan hybrid scaffolds were fabricated through the sol-gel method with a freeze drying process. 3-Glycidoxypropyl trimethoxysilane (GPTMS) and tetraethylorthosilicate (TEOS) were used as the covalent inorganic/organic coupling agent and the separate inorganic source, respectively. Hybrid scaffolds with various inorganic/organic weight ratios (I/Os) and molar ratios of chitosan and GPTMS (GCs) were examined and compared in this study. FTIR showed that higher GPTMS content resulted in the increased covalent cross-linking of the chitosan and the silica network in hybrids. Compression testing indicated that increasing the GPTMS content greatly improved the compressive strength of scaffold. LIVE/DEAD assay showed that enhanced cytocompatibility was obtained as the silica content increased. Therefore, the results confirmed that the two parameters I/O and GC can largely influence the scaffold performance, which can be used to tailor the hybrid properties.


Materials Science and Engineering: C | 2017

Low-temperature deposition manufacturing: A novel and promising rapid prototyping technology for the fabrication of tissue-engineered scaffold

Wei Liu; Daming Wang; Jianghong Huang; You Wei; Jianyi Xiong; Weimin Zhu; Li Duan; Jielin Chen; Rong Sun; Daping Wang

Developed in recent years, low-temperature deposition manufacturing (LDM) represents one of the most promising rapid prototyping technologies. It is not only based on rapid deposition manufacturing process but also combined with phase separation process. Besides the controlled macropore size, tissue-engineered scaffold fabricated by LDM has inter-connected micropores in the deposited lines. More importantly, it is a green manufacturing process that involves non-heating liquefying of materials. It has been employed to fabricate tissue-engineered scaffolds for bone, cartilage, blood vessel and nerve tissue regenerations. It is a promising technology in the fabrication of tissue-engineered scaffold similar to ideal scaffold and the design of complex organs. In the current paper, this novel LDM technology is introduced, and its control parameters, biomedical applications and challenges are included and discussed as well.


BioMed Research International | 2013

The Study on Biocompatibility of Porous nHA/PLGA Composite Scaffolds for Tissue Engineering with Rabbit Chondrocytes In Vitro

Lei Chen; Weimin Zhu; Zhi-Qiang Fei; Jielin Chen; Jianyi Xiong; Jufeng Zhang; Li Duan; Jianghong Huang; Zhiyong Liu; Daping Wang; Yanjun Zeng

Objective. To examine the biocompatibility of a novel nanohydroxyapatite/poly[lactic-co-glycolic acid] (nHA/PLGA) composite and evaluate its feasibility as a scaffold for cartilage tissue engineering. Methods. Chondrocytes of fetal rabbit were cultured with nHA/PLGA scaffold in vitro and the cell viability was assessed by MTT assay first. Cells adhering to nHA/PLGA scaffold were then observed by inverted microscope and scanning electron microscope (SEM). The cell cycle profile was analyzed by flow cytometry. Results. The viability of the chondrocytes on the scaffold was not affected by nHA/PLGA comparing with the control group as it was shown by MTT assay. Cells on the surface and in the pores of the scaffold increased in a time-dependent manner. Results obtained from flow cytometry showed that there was no significant difference in cell cycle profiles between the coculture group and control (P > 0.05). Conclusion. The porous nHA/PLGA composite scaffold is a biocompatible and good kind of scaffold for cartilage tissue engineering.


BioMed Research International | 2016

Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes

Xingfu Li; Li Duan; Yujie Liang; Weimin Zhu; Jianyi Xiong; Daping Wang

Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs) and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2) and decreased type I collagen (COL1) protein expression levels. SRY-box 9 (SOX9) mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.


Journal of The Saudi Pharmaceutical Society | 2017

Osteogenic differentiation of bone marrow mesenchymal stem cells by magnetic nanoparticle composite scaffolds under a pulsed electromagnetic field

Jianghong Huang; Daming Wang; Jielin Chen; Wei Liu; Li Duan; Wei You; Weimin Zhu; Jianyi Xiong; Daping Wang

This study was conducted to investigate the effect of magnetic nanoparticle composite scaffold under a pulsed electromagnetic field on bone marrow mesenchymal stem cells (BMSCs), which was achieved by examining the biological behaviors of cell adhesion, proliferation and differentiation on the surface of the scaffolds. This may provide some experimental evidence for the use of magnetic nanoparticles in medical application. The magnetic nanoparticle composite scaffolds were evaluated and characterized by the following indexes: the cell proliferation was detected by the CCK-8 method, the alkaline phosphatase (ALP) activity was examined by a detection kit, and the expression of type I collagen and osteocalcin gene were evaluated by RT-PCR. The CCK-8 test showed that there was no significant difference in Group A (BMSCs-seeded magnetic scaffolds under the electromagnetic field), B (BMSCs-seeded magnetic scaffolds) and C (BMSCs cultured alone) (P > 0.05). The value for the ALP activity in Group A was higher than the other two groups. In addition, the RT-PCR results showed that the expression of type I collagen gene in Group A was enhanced (P < 0.05), suggesting that the magnetic nanoparticles combined with the pulsed electromagnetic field had a positive effect on the osteogenic differentiation of BMSCs. However, the expression of osteocalcin was not significantly different in three groups (P > 0.05). To conclude, magnetic nanoparticles may induce the osteogenic differentiation with the action of the pulsed electromagnetic field.


Artificial Cells Nanomedicine and Biotechnology | 2017

Repair of rabbit cartilage defect based on the fusion of rabbit bone marrow stromal cells and Nano-HA/PLLA composite material

Weimin Zhu; Daiqi Guo; Liangquan Peng; Yun Fang Chen; Jiaming Cui; Jianyi Xiong; Wei Lu; Li Duan; Kang Chen; Yanjun Zeng; Daping Wang

Abstract Objective To assess the effect of the fusion of rabbit bone marrow stromal cells (rBMSCs) and Nano-hydroxyapatite/poly (l-lactic acid) (Nano-HA/PLLA) in repairing the rabbit knee joint with full-thickness cartilage defect. Method The rBMSCs were isolated and cultured in vitro, and the third generation of rBMSCs was co-cultured with the Nano-HA/PLLA to construct the tissue-engineered cartilage (TEC). Eighteen New Zealand white rabbits were selected and randomly divided into three groups, namely, TEC group, Nano-HA/PLLA group, and control group. A cartilage defect model with the diameter of 4.5 mm and depth of 5 mm was constructed on the articular surface of medial malleolus of rabbit femur. General observation, histological observation, and Wakitani’s histological scoring were conducted in the 12th and 24th week postoperatively. Results The results of TEC group indicated that new cartilage tissue was formed on the defect site and subchondral bone achieved physiological integration basically. Histological and immunohistochemical analyses indicated the generation of massive extracellular matrix. In contrast, limited regeneration and reconstruction of cartilage was achieved in the Nano-HA/PLLA group and control group, with a significant difference from the TEC group (p < 0.05). Moreover, the effect of cartilage repair was positively correlated with time. Conclusion The porous Nano-HA/PLLA combined with BMSCs promoted the repair of weight-bearing bone of adult rabbit’s knee joint with cartilage defect.


Oncology Letters | 2015

MicroRNA-33a-5p suppresses growth of osteosarcoma cells and is downregulated in human osteosarcoma

Jufeng Zhang; Daping Wang; Jianyi Xiong; Lei Chen; Jianghong Huang

A body of evidence has indicated that microRNAs (miRNAs) may have significant roles in cancer. Aberrant expression of miRNAs has frequently been observed in various human malignancies, including osteosarcoma (OS). However, the roles of miRNAs in OS remain poorly understood. In the present study, high-throughput deep sequencing was performed to screen for deregulated miRNAs in OS. Screening identified 310 miRNAs which were significantly overexpressed and 41 miRNAs which were significantly downregulated (>2-fold) in OS samples, compared with adjacent non-tumor bone tissues. Among these miRNAs, miR-33a-5p was notably downregulated. TaqMan reverse transcription-polymerase chain reaction analysis further verified that miR-33a-5p expression was significantly reduced in a large cohort of human OS samples. Enhancing miR-33a-5p expression via transfection with miR-33a-5p precursor significantly inhibited OS cell growth, suggesting potential antitumor properties of miR-33a-5p. The results of the present study provide novel insights into the miRNAs involved in OS, and suggest that miR-33a-5p may function as a tumor suppressor in OS. Therefore, miR-33a-5p may be able to serve as a diagnostic and therapeutic target for OS treatment.


Oncology Letters | 2018

MicroRNA‑124 acts as a tumor‑suppressive miRNA by inhibiting the expression of Snail2 in osteosarcoma

Jianghong Huang; Yujie Liang; Meiquan Xu; Jianyi Xiong; Daping Wang; Qiang Ding

The aim of the present study was to investigate the clinical significance of hsa-microRNA-124-3p (miR-124) in osteosarcoma (OS), and examine its role in cell growth and invasion. Using a microRNA chip array, the expression of miR-124 was detected in samples of surgically resected OS and matched against the levels of expression in tumor-adjacent normal tissues. The levels of miR-124 were upregulated in the OS cells through the transfection of miR-124 mimics. Cell proliferation and Transwell assays were performed to determine cell proliferation and invasion; Reverse transcription-quantitative polymerase chain reaction, western blot and luciferase assays were then used to detect the expression of the target gene snail family zinc finger 2 (Snail2). The expression of miR-124 was significantly lower in the OS tissues, compared with that in the tumor-adjacent normal tissues; and the expression of miR-124 in the tumor tissues was significantly associated with tumor size. miR-124 directly repressed the expression of Snail2, and resulted in a significant inhibition of cell proliferation and invasion. In a mouse model, the overexpression of miR-124 significantly inhibited U2OS cell proliferation and invasion. Taken together, miR-124 was associated with the adverse clinical and pathological features observed in OS. It acted as a tumor suppressor to regulate the proliferation and invasion of OS cells by targeting Snail2, suggesting that miR-124 may be key in the progression of OS.

Collaboration


Dive into the Jianyi Xiong's collaboration.

Top Co-Authors

Avatar

Daping Wang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weimin Zhu

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Lu

Shenzhen University

View shared research outputs
Top Co-Authors

Avatar

Yanjun Zeng

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yujie Liang

The Chinese University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge