Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianyong Xu is active.

Publication


Featured researches published by Jianyong Xu.


Cell Stem Cell | 2010

A Mesenchymal-to-Epithelial Transition Initiates and Is Required for the Nuclear Reprogramming of Mouse Fibroblasts

Ronghui Li; Jialiang Liang; Su Ni; Ting Zhou; Xiaobing Qing; Huapeng Li; Wenzhi He; Jiekai Chen; Feng Li; Qiang Zhuang; Baoming Qin; Jianyong Xu; Wen Li; Jiayin Yang; Yi Gan; Dajiang Qin; Shipeng Feng; Hong Song; Dongshan Yang; Biliang Zhang; Lingwen Zeng; Liangxue Lai; Miguel A. Esteban; Duanqing Pei

Epithelial-to-mesenchymal transition (EMT) is a developmental process important for cell fate determination. Fibroblasts, a product of EMT, can be reset into induced pluripotent stem cells (iPSCs) via exogenous transcription factors but the underlying mechanism is unclear. Here we show that the generation of iPSCs from mouse fibroblasts requires a mesenchymal-to-epithelial transition (MET) orchestrated by suppressing pro-EMT signals from the culture medium and activating an epithelial program inside the cells. At the transcriptional level, Sox2/Oct4 suppress the EMT mediator Snail, c-Myc downregulates TGF-beta1 and TGF-beta receptor 2, and Klf4 induces epithelial genes including E-cadherin. Blocking MET impairs the reprogramming of fibroblasts whereas preventing EMT in epithelial cells cultured with serum can produce iPSCs without Klf4 and c-Myc. Our work not only establishes MET as a key cellular mechanism toward induced pluripotency, but also demonstrates iPSC generation as a cooperative process between the defined factors and the extracellular milieu. PAPERCLIP:


Cell Stem Cell | 2010

Vitamin C Enhances the Generation of Mouse and Human Induced Pluripotent Stem Cells

Miguel A. Esteban; Tao Wang; Baoming Qin; Jiayin Yang; Dajiang Qin; Jinglei Cai; Wen Li; Zhihui Weng; Jiekai Chen; Su Ni; Keshi Chen; Yuan Li; Xiaopeng Liu; Jianyong Xu; Shiqiang Zhang; Feng Li; Wenzhi He; Krystyna Labuda; Yancheng Song; Anja Peterbauer; Susanne Wolbank; Heinz Redl; Mei Zhong; Daozhang Cai; Lingwen Zeng; Duanqing Pei

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by defined factors. However, the low efficiency and slow kinetics of the reprogramming process have hampered progress with this technology. Here we report that a natural compound, vitamin C (Vc), enhances iPSC generation from both mouse and human somatic cells. Vc acts at least in part by alleviating cell senescence, a recently identified roadblock for reprogramming. In addition, Vc accelerates gene expression changes and promotes the transition of pre-iPSC colonies to a fully reprogrammed state. Our results therefore highlight a straightforward method for improving the speed and efficiency of iPSC generation and provide additional insights into the mechanistic basis of the reprogramming process.


Journal of Biological Chemistry | 2009

Generation of induced pluripotent stem cell lines from tibetan miniature pig

Miguel A. Esteban; Jianyong Xu; Jiayin Yang; Meixiu Peng; Dajiang Qin; Wen Li; Zhuoxin Jiang; Jiekai Chen; Kang Deng; Mei Zhong; Jinglei Cai; Liangxue Lai; Duanqing Pei

Induced pluripotent stem cell (iPS) technology appears to be a general strategy to generate pluripotent stem cells from any given mammalian species. So far, iPS cells have been reported for mouse, human, rat, and monkey. These four species have also established embryonic stem cell (ESC) lines that serve as the gold standard for pluripotency comparisons. Attempts have been made to generate porcine ESC by various means without success. Here we report the successful generation of pluripotent stem cells from fibroblasts isolated from the Tibetan miniature pig using a modified iPS protocol. The resulting iPS cell lines more closely resemble human ESC than cells from other species, have normal karyotype, stain positive for alkaline phosphatase, express high levels of ESC-like markers (Nanog, Rex1, Lin28, and SSEA4), and can differentiate into teratomas composed of the three germ layers. Because porcine physiology closely resembles human, the iPS cells reported here provide an attractive model to study certain human diseases or assess therapeutic applications of iPS in a large animal model.


Human Molecular Genetics | 2011

Rescue of ATP7B function in hepatocyte-like cells from Wilson's disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin

Shiqiang Zhang; Shen Chen; Wen Li; Xiangpeng Guo; Ping Zhao; Jianyong Xu; Yan Chen; Qiong Pan; Xiaorong Liu; Daniela Zychlinski; Hai Lu; Micky D. Tortorella; Axel Schambach; Yan Wang; Duanqing Pei; Miguel A. Esteban

Directed hepatocyte differentiation from human induced pluripotent stem cells (iPSCs) potentially provides a unique platform for modeling liver genetic diseases and performing drug-toxicity screening in vitro. Wilsons disease is a genetic disease caused by mutations in the ATP7B gene, whose product is a liver transporter protein responsible for coordinated copper export into bile and blood. Interestingly, the spectrum of ATP7B mutations is vast and can influence clinical presentation (a variable spectrum of hepatic and neural manifestations), though the reason is not well understood. We describe the generation of iPSCs from a Chinese patient with Wilsons disease that bears the R778L Chinese hotspot mutation in the ATP7B gene. These iPSCs were pluripotent and could be readily differentiated into hepatocyte-like cells that displayed abnormal cytoplasmic localization of mutated ATP7B and defective copper transport. Moreover, gene correction using a self-inactivating lentiviral vector that expresses codon optimized-ATP7B or treatment with the chaperone drug curcumin could reverse the functional defect in vitro. Hence, our work describes an attractive model for studying the pathogenesis of Wilsons disease that is valuable for screening compounds or gene therapy approaches aimed to correct the abnormality. In the future, once relevant safety concerns (including the stability of the mature liver-like phenotype) and technical issues for the transplantation procedure are solved, hepatocyte-like cells from similarly genetically corrected iPSCs could be an option for autologous transplantation in Wilsons disease.


Journal of Biological Chemistry | 2010

Induced Pluripotent Stem Cells Can Be Used to Model the Genomic Imprinting Disorder Prader-Willi Syndrome

Jiayin Yang; Jie Cai; Ya Zhang; Xianming Wang; Wen Li; Jianyong Xu; Feng Li; Xiangpeng Guo; Kang Deng; Mei Zhong; Yonglong Chen; Liangxue Lai; Duanqing Pei; Miguel A. Esteban

The recent discovery of induced pluripotent stem cell (iPSC) technology provides an invaluable tool for creating in vitro representations of human genetic conditions. This is particularly relevant for those diseases that lack adequate animal models or where the species comparison is difficult, e.g. imprinting diseases such as the neurogenetic disorder Prader-Willi syndrome (PWS). However, recent reports have unveiled transcriptional and functional differences between iPSCs and embryonic stem cells that in cases are attributable to imprinting errors. This has suggested that human iPSCs may not be useful to model genetic imprinting diseases. Here, we describe the generation of iPSCs from a patient with PWS bearing a partial translocation of the paternally expressed chromosome 15q11-q13 region to chromosome 4. The resulting iPSCs match all standard criteria of bona fide reprogramming and could be readily differentiated into tissues derived from the three germ layers, including neurons. Moreover, these iPSCs retain a high level of DNA methylation in the imprinting center of the maternal allele and show concomitant reduced expression of the disease-associated small nucleolar RNA HBII-85/SNORD116. These results indicate that iPSCs may be a useful tool to study PWS and perhaps other genetic imprinting diseases as well.


Human Gene Therapy | 2012

Generation of CD34+ Cells from CCR5-Disrupted Human Embryonic and Induced Pluripotent Stem Cells

Yongchao Yao; Bayaer Nashun; Tiancheng Zhou; Li Qin; Limei Qin; Siting Zhao; Jianyong Xu; Miguel A. Esteban; Xiaoping Chen

C-C chemokine receptor type 5 (CCR5) is a major co-receptor for the entry of human immunodeficiency virus type-1 (HIV-1) into target cells. Human hematopoietic stem cells (hHSCs) with naturally occurring CCR5 deletions (Δ32) or artificially disrupted CCR5 have shown potential for curing acquired immunodeficiency syndrome (AIDS). However, Δ32 donors are scarce, heterologous bone marrow transplantation is not exempt of risks, and genetic engineering of autologous hHSCs is not trivial. Here, we have disrupted the CCR5 locus of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) using specific zinc finger nucleases (ZFNs) combined with homologous recombination. The modified hESCs and hiPSCs retained pluripotent characteristics and could be differentiated in vitro into CD34(+) cells that formed all types of hematopoietic colonies. Our results suggest the potential of using patient-specific hHSCs derived from ZFN-modified hiPSCs for treating AIDS.


Journal of The American Society of Nephrology | 2010

VHL inactivation induces HEF1 and Aurora kinase A.

Jianyong Xu; Huapeng Li; Bo Wang; Yan Xu; Jiayin Yang; Xiaofei Zhang; Sarah K. Harten; Deepa Shukla; Patrick H. Maxwell; Duanqing Pei; Miguel A. Esteban

The ciliary hypothesis for cystic renal diseases postulates that most of these conditions result from abnormalities in the primary cilium, a microtubule-based structure that acts as a sensor for extracellular cues. Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene predisposes to renal cysts and clear cell renal cell carcinoma. VHL plays a critical role in the formation of primary cilia in kidney epithelium, but the underlying mechanisms are poorly understood. Here, we demonstrate that VHL inactivation induces HEF1/Cas-L/NEDD9 and Aurora kinase A via the stabilization of hypoxia-inducible factors 1 and 2. Aurora kinase A is a mitotic kinase commonly upregulated in cancer that causes regression of the primary cilium by promoting histone deacetylase-dependent tubulin depolymerization of the ciliary axoneme. HEF1/Cas-L/NEDD9 is a component of focal adhesions that has a prominent role in inducing metastasis and that colocalizes with Aurora kinase A at the centrosome, thereby enhancing the harmful effect of Aurora kinase A on the cilium. Suppression of this pathway improved the formation of primary cilia and reduced cell motility in VHL-defective renal cancer cells. Our results highlight the gatekeeper role of VHL in the kidney epithelium.


Journal of Biological Chemistry | 2010

Towards an Optimized Culture Medium for the Generation of Mouse Induced Pluripotent Stem Cells

Jiekai Chen; Jing Liu; Qingkai Han; Dajiang Qin; Jianyong Xu; You Chen; Jiaqi Yang; Hong Song; Dongshan Yang; Meixiu Peng; Wenzhi He; Ronghui Li; Hao Wang; Yi Gan; Ke Ding; Lingwen Zeng; Liangxue Lai; Miguel A. Esteban; Duanqing Pei

Generation of induced pluripotent stem cells from somatic cells using defined factors has potential relevant applications in regenerative medicine and biology. However, this promising technology remains inefficient and time consuming. We have devised a serum free culture medium termed iSF1 that facilitates the generation of mouse induced pluripotent stem cells. This optimization of the culture medium is sensitive to the presence of Myc in the reprogramming factors. Moreover, we could reprogram meningeal cells using only two factors Oct4/Klf4. Therefore, iSF1 represents a basal medium that may be used for mechanistic studies and testing new reprogramming approaches.


Journal of Biological Chemistry | 2008

Mouse Meningiocytes Express Sox2 and Yield High Efficiency of Chimeras after Nuclear Reprogramming with Exogenous Factors

Dajiang Qin; Yi Gan; Kaifeng Shao; Hao Wang; Wen Li; Tao Wang; Wenzhi He; Jianyong Xu; Yu Zhang; Zhaohui Kou; Lingwen Zeng; Guoqing Sheng; Miguel A. Esteban; Shaorong Gao; Duanqing Pei

Induced pluripotent stem cell technology, also termed iPS, is an emerging approach to reprogram cells into an embryonic stem cell-like state by viral transduction with defined combinations of factors. iPS cells share most characteristics of embryonic stem cells, counting pluripotency and self-renewal, and have so far been obtained from mouse and humans, including patients with genetic diseases. Remarkably, autologous transplantation of cell lineages derived from iPS cells will eliminate the possibility of immunological rejection, as well as current ethical issues surrounding human embryonic stem cell research. However, before iPS can be used for clinical purposes, technical problems must be overcome. Among other considerations, full and homogeneous iPS reprogramming is an important prerequisite. However, despite the fact that cells from several mouse tissues can be successfully induced to iPS, the overall efficiency of chimera formation of these clones remains low even if selection for Oct4 or Nanog expression is applied. In this report, we demonstrate that cells from the mouse meningeal membranes express elevated levels of the embryonic master regulator Sox2 and are highly amenable to iPS. Meningeal iPS clones, generated without selection, are fully and homogeneously reprogrammed based on DNA methylation analysis and 100% chimera competent. Our results define a population of somatic cells that are ready to undergo iPS, thus highlighting a very attractive cell type for iPS research and application.


Advances in Biochemical Engineering \/ Biotechnology | 2010

Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology

Duanqing Pei; Jianyong Xu; Qiang Zhuang; Hung-Fat Tse; Miguel A. Esteban

The potential of human embryonic stem cells (ESCs) for regenerative medicine is unquestionable, but practical and ethical considerations have hampered clinical application and research. In an attempt to overcome these issues, the conversion of somatic cells into pluripotent stem cells similar to ESCs, commonly termed nuclear reprogramming, has been a top objective of contemporary biology. More than 40 years ago, King, Briggs, and Gurdon pioneered somatic cell nuclear reprogramming in frogs, and in 1981 Evans successfully isolated mouse ESCs. In 1997 Wilmut and collaborators produced the first cloned mammal using nuclear transfer, and then Thomson obtained human ESCs from in vitro fertilized blastocysts in 1998. Over the last 2 decades we have also seen remarkable findings regarding how ESC behavior is controlled, the importance of which should not be underestimated. This knowledge allowed the laboratory of Shinya Yamanaka to overcome brilliantly conceptual and technical barriers in 2006 and generate induced pluripotent stem cells (iPSCs) from mouse fibroblasts by overexpressing defined combinations of ESC-enriched transcription factors. Here, we discuss some important implications of human iPSCs for biology and medicine and also point to possible future directions.

Collaboration


Dive into the Jianyong Xu's collaboration.

Top Co-Authors

Avatar

Duanqing Pei

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Miguel A. Esteban

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Jiayin Yang

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Wen Li

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Dajiang Qin

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lingwen Zeng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenzhi He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiekai Chen

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Mei Zhong

Southern Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge