Jianyuan Li
Yantai University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jianyuan Li.
Molecular & Cellular Proteomics | 2010
Jianyuan Li; Fu-Jun Liu; Haiyan Wang; Xin Liu; Juan Liu; Ning Li; FengChun Wan; Wenting Wang; ChengLin Zhang; ShaoHua Jin; Jie Liu; Peng Zhu; YunXiang Liu
The mammalian spermatozoon has many cellular compartments, such as head and tail, permitting it to interact with the female reproductive tract and fertilize the egg. It acquires this fertilizing potential during transit through the epididymis, which secretes proteins that coat different sperm domains. Optimal levels of these proteins provide the spermatozoon with its ability to move to, bind to, fuse with, and penetrate the egg; otherwise male infertility results. As few human epididymal proteins have been characterized, this work was performed to generate a database of human epididymal sperm-located proteins involved in maturation. Two-dimensional gel electrophoresis of epididymal tissue and luminal fluid proteins, followed by identification using MALDI-TOF/MS or MALDI-TOF/TOF, revealed over a thousand spots in gels comprising 745 abundant nonstructural proteins, 408 in luminal fluids, of which 207 were present on spermatozoa. Antibodies raised to 619 recombinant or synthetic peptides, used in Western blots, histological sections, and washed sperm preparations to confirm antibody quality and protein expression, indicated their regional location in the epididymal epithelium and highly specific locations on washed functional spermatozoa. Sperm function tests suggested the role of some proteins in motility and protection against oxidative attack. A large database of these proteins, characterized by size, pI, chromosomal location, and function, was given a unified terminology reflecting their sperm domain location. These novel, secreted human epididymal proteins are potential targets for a posttesticular contraceptive acting to provide rapid, reversible, functional sterility in men and they are also biomarkers that could be used in noninvasive assessments of male fertility.
Molecular & Cellular Proteomics | 2011
Jianyuan Li; Fu-Jun Liu; Xin Liu; Juan Liu; Peng Zhu; FengChun Wan; ShaoHua Jin; Wenting Wang; Ning Li; Jie Liu; Haiyan Wang
The testis produces male gametes in the germinal epithelium through the development of spermatogonia and spermatocytes into spermatids and immature spermatozoa with the support of Sertoli cells. The flow of spermatozoa into the epididymis is aided by testicular secretions. In the epididymal lumen, spermatozoa and testicular secretions combine with epididymal secretions that promote sperm maturation and storage. We refer to the combined secretions in the epididymis as the sperm-milieu. With two-dimensional-PAGE matrix-assisted laser desorption ionization time-of-flight MS analysis of healthy testes from fertile accident victims, 725 unique proteins were identified from 1920 two-dimensional-gel spots, and a corresponding antibody library was established. This revealed the presence of 240 proteins in the sperm-milieu by Western blotting and the localization of 167 proteins in mature spermatozoa by ICC. These proteins, and those from the epididymal proteome (Li et al. 2010), form the proteomes of the sperm-milieu and the spermatozoa, comprising 525 and 319 proteins, respectively. Individual mapping of the 319 sperm-located proteins to various testicular cell types by immunohistochemistry suggested that 47% were intrinsic sperm proteins (from their presence in spermatids) and 23% were extrinsic sperm proteins, originating from the epididymis and acquired during maturation (from their absence from the germinal epithelium and presence in the epididymal tissue and sperm-milieu). Whereas 408 of 525 proteins in the sperm-milieu proteome were previously identified as abundant epididymal proteins, the remaining 22%, detected by the use of new testicular antibodies, were more likely to be minor proteins common to the testicular proteome, rather than proteins of testicular origin added to spermatozoa during maturation in the epididymis. The characterization of the sperm-milieu proteome and testicular mapping of the sperm-located proteins presented here provide the molecular basis for further studies on the production and maturation of spermatozoa. This could be the basis of development of diagnostic markers and therapeutic targets for infertility or targets for male contraception.
DNA Research | 2008
Jianyuan Li; Haiyan Wang; Jie Liu; Qiang Liu; Zhang J; FengChun Wan; Fu-Jun Liu; Shao-Hua Jin; Yonglian Zhang
Mammalian Gene Collection (MGC) verified over 9000 human full-ORF genes and FLJ Program reported 21 243 cDNAs of which 14 409 were unique ones and 5416 seemed to be protein-coding. The pity is that epididymis cDNA library was missing in their sequencing target list. Epididymis is a very important male accessory sex organ for sperm maturation and storage. Fully differentiated spermatozoa left from testis acquire their motility and capacity for fertilization via interactions with the epididymal epithelium duct lumen during passage through this convoluted duct. Here, we report that 20 000 clones from a healthy male epididymis cDNA library have been sequenced. The sequencing data provided 8234 known sequences and 650 unknown cDNA fragments. Hundred and six of 650 unknown cDNA clone inserts were randomly selected for fully sequencing. There were 25 unknown unique sequences and 19 released but unreported sequences came out. By northern blot analysis, four sequences randomly selected from the 19 released sequences with no known function showed positive mRNA signals in epididymis and testis. The signals for three of six from those unknown group showed as epididymis abundant in a region-specific manner but not in the testis and other tissues tested. All the sequencing data will be available on the website www.sdscli.com.
Gene | 2012
Yan Li; Haiyan Wang; FengChun Wan; Fu-Jun Liu; Juan Liu; Na Zhang; ShaoHua Jin; Jianyuan Li
The epididymis plays a crucial role in regulating the development of sperm motility and fertilizing capacity. Small non-coding RNAs (sncRNAs), especially microRNAs (miRNAs), can participate in the regulation of various physiological pathways. However, their abundance and whether they are involved in the regulation of gene expression in the human epididymis are unknown. By adopting the Solexa deep sequencing approach, we systematically investigated the sncRNAs in the adult human epididymis. A total of 4903 unique sequences representing 527 known miRNA were discovered. Eighteen novel miRNA genes encoding 23 mature miRNAs were also identified and the expression of some of them was confirmed by qRT-PCR. The presence of Piwi-interacting RNAs (piRNAs) in the library also adds to the diversity of the sncRNA population in the human epididymis. This research will contribute to a preliminary database for their functional study in male reproductive system.
PLOS ONE | 2014
Xiufeng Hua; Yanwei Wang; Yu-xiao Tang; Sheng-qiang Yu; Shao-hua Jin; Xiao-mei Meng; Hua-feng Li; Fu-Jun Liu; Qiang Sun; Haiyan Wang; Jianyuan Li
Background Human pancreatic islet transplantation is a prospective curative treatment for diabetes. However, the lack of donor pancreases greatly limits this approach. One approach to overcome the limited supply of donor pancreases is to generate functional islets from human embryonic stem cells (hESCs), a cell line with unlimited proliferative capacity, through rapid directed differentiation. This study investigated whether pancreatic insulin-producing cells (IPCs) differentiated from hESCs could correct hyperglycemia in severe combined immunodeficient (SCID)/non-obese diabetic (NOD) mice, an animal model of diabetes. Methods We generated pancreatic IPCs from two hESC lines, YT1 and YT2, using an optimized four-stage differentiation protocol in a chemically defined culture system. Then, about 5–7×106 differentiated cells were transplanted into the epididymal fat pad of SCID/NOD mice (n = 20). The control group were transplanted with undifferentiated hESCs (n = 6). Graft survival and function were assessed using immunohistochemistry, and measuring serum human C-peptide and blood glucose levels. Results The pancreatic IPCs were generated by the four-stage differentiation protocol using hESCs. About 17.1% of differentiated cells expressed insulin, as determined by flow cytometry. These cells secreted insulin/C-peptide following glucose stimulation, similarly to adult human islets. Most of these IPCs co-expressed mature β cell-specific markers, including human C-peptide, GLUT2, PDX1, insulin, and glucagon. After implantation into the epididymal fat pad of SCID/NOD mice, the hESC-derived pancreatic IPCs corrected hyperglycemia for ≥8 weeks. None of the animals transplanted with pancreatic IPCs developed tumors during the time. The mean survival of recipients was increased by implanted IPCs as compared to implanted undifferentiated hESCs (P<0.0001). Conclusions The results of this study confirmed that human terminally differentiated pancreatic IPCs derived from hESCs can correct hyperglycemia in SCID/NOD mice for ≥8 weeks.
Asian Journal of Andrology | 2013
Jun Wei; Shi-Jia Li; Hui Shi; Haiyan Wang; Cheng-Ting Rong; Peng Zhu; ShaoHua Jin; Juan Liu; Jianyuan Li
C-type lysozyme genes (Lyzls) belong to the class of lysozymes and are highly expressed in the testis and epididymis. The members Lyzl4 and Spaca3 have been reported to play a role in sperm-egg binding and fertilisation in mice. However, the function of the remaining two mouse c-type lysozyme genes, Lyzl1 and Lyzl6, is still not clear. In the present study, we analysed the tissue expression and androgen-dependent expression of mouse c-type lysozyme genes and the possible contribution of human recombinant LYZL6 (rLYZL6) to immunity. The expression of Lyzls was detected by RT-PCR, Western blots, immunohistochemistry and immunofluorescence. The bacteriolytic activity of rLYZL6 was analysed by a colony-forming assay. In mice, the expression of Lyzl genes was mainly in the testis and epididymis in a developmentally regulated manner and androgen- or testicular factor-regulated manner. Immunodetection revealed the presence of LYZL6 protein in primary spermatocytes and round spermatids of the testis and on the post-acrosomal area and midpiece of mature epididymal spermatozoa. The rLYZL6 protein exhibited antibacterial activity. From the results, Lyzls may play a role in mitochondrial function of spermatozoa and LYZL6 may contribute to the innate immunity of the male genital tract.
Journal of Biochemistry and Molecular Biology | 2011
FuJun Liu; Haiyan Wang; Jianyuan Li
The testis is major male gonad responsible for spermatogenesis and steroidogenesis. Much knowledge is still remained to be learned about the control of these events. In this study, we performed a comprehensive bioinformatics analysis on 1,196 mouse testis proteins screened from public protein database. Integrated function and pathway analysis were performed through Database for Annotation, Visualization and Integrated Discovery (DAVID) and ingenuity Pathway Analysis (IPA), and significant features were clustered. Protein membrane organization and gene density on chromosomes were analyzed and discussed. The enriched bioinformatics analysis could provide clues and basis to the development of diagnostic markers and therapeutic targets for infertility and male contraception.
Asian Journal of Andrology | 2017
Zhen-Ning Du; Cheng-Ting Rong; Shi Hui; Zhu Peng; ShaoHua Jin; Shi-Jia Li; Haiyan Wang; Jianyuan Li
HSP110 functions to protect cells, tissues, and organs from noxious conditions. Vasectomy induces apoptosis in the testis; however, little is known about the reason leading to this outcome. The aim of the present study was to evaluate the expression and function of HSP110 in mouse testis after vasectomy. Following bilateral vasectomy, we used fluorescent Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) to detect apoptosis, Western blotting and immunohistochemistry to examine HSP110 expression and localization. Serum antisperm antibody (AsAb) and testosterone were measured by Enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay, respectively. Expression of endoplasmic reticulum stress (ERS) sensors and downstream signaling components was measured by Reverse Transcription-Polymerase Chain Reaction (RT-PCR), and the phosphorylation of eIF2α and JNK was detected by Western blotting. Vasectomy induced morphologic changes, increased apoptosis in the testis, increased serum AsAb, and decreased testosterone levels. After vasectomy, ORP150 mRNA level was increased first and then decreased, Bcl-2 was decreased, and the expression of HSPA4l, GRP78, GADD153, PERK, ATF6, IRE-1, XBP-1s, Bax, Bak, and caspases and the phosphorylation of eIF2α and JNK were increased. We present that an ER stress-mediated pathway is activated and involved in apoptosis in the testis after vasectomy. HSPA4l and ORP150 may play important roles in maintaining the normal structure and function of testis.
Molecular Medicine Reports | 2016
Xiaomei Wang; Fu-Jun Liu; Xin Gao; Xin Liu; Xiaojun Kong; Haiyan Wang; Jianyuan Li
Heat stress is demonstrated to have an effect on the function of the male testis, however, limited information has been reported on its effects on sperm maturation. In the present study, a comparative proteomic analysis was performed on the rat caput epididymal fluids responsible for sperm maturation, to identify key heat‑stress‑associated sperm maturation proteins. The results demonstrated 21 proteins corresponding to 29 differential protein spots, including 10 downregulated and 11 upregulated proteins in the heat treatment group. Functional analysis demonstrated that these proteins were primarily involved in enriched reproduction and antioxidant activity. Analysis of western blot and immunohistochemical analysis demonstrated that the expression of antioxidant proteins peroxiredoxin 6 and clusterin were downregulated, and the expression of superoxide dismutase upregulated, in the heat treatment group. Morphological and TUNEL experiments demonstrated that altered nucleus activity occurred in the caput epididymis. The study provided, to the best of our knowledge, novel information for studies on the biological functions of the epididymis and sperm maturation.
Neural Regeneration Research | 2012
Xiufeng Hua; Yanwei Wang; Peiwen Lian; Shouxin Zhang; Jianyuan Li; Haiyan Wang; Shulin Chen; Wei Gao
Pancreatic stem cells were isolated and cultured from aborted human fetal pancreases of gestational age 14–20 weeks. They were seeded at a density of 1 × 104 in serum-free media for differentiation into neuron-like cells, expressing β-tubulin III and glial fibrillary acidic protein. These neuron-like cells displayed a synapse-like morphology and appeared to form a neuronal network. Pancreatic stem cells were also seeded at a density of 1 × 105 for differentiation into islet-like cells, expressing insulin and glucagon, with an islet-like morphology. These cells had glucose-stimulated secretion of human insulin and C-peptide. Results suggest that pancreatic stem cells can be differentiated into neuron-like and islet-like cells.