Jiaxing Ren
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiaxing Ren.
ACS Nano | 2017
Tamar Segal-Peretz; Jiaxing Ren; Shisheng Xiong; Gurdaman S. Khaira; Alec Bowen; Leonidas E. Ocola; Ralu Divan; Manolis Doxastakis; Nicola J. Ferrier; Juan J. de Pablo; Paul F. Nealey
Characterization of the three-dimensional (3D) structure in directed self-assembly (DSA) of block copolymers is crucial for understanding the complex relationships between the guiding template and the resulting polymer structure so DSA could be successfully implemented for advanced lithography applications. Here, we combined scanning transmission electron microscopy (STEM) tomography and coarse-grain simulations to probe the 3D structure of P2VP-b-PS-b-P2VP assembled on prepatterned templates using solvent vapor annealing. The templates consisted of nonpreferential background and raised guiding stripes that had PS-preferential top surfaces and P2VP-preferential sidewalls. The full 3D characterization allowed us to quantify the shape of the polymer domains and the interface between domains as a function of depth in the film and template geometry and offered important insights that were not accessible with 2D metrology. Sidewall guiding was advantageous in promoting the alignment and lowering the roughness of the P2VP domains over the sidewalls, but incommensurate confinement from the increased topography could cause roughness and intermittent dislocations in domains over the background region at the bottom of the film. The 3D characterization of bridge structures between domains over the background and breaks within domains on guiding lines sheds light on possible origins of common DSA defects. The positional fluctuations of the PS/P2VP interface between domains showed a depth-dependent behavior, with high levels of fluctuations near both the free surface of the film and the substrate and lower fluctuation levels in the middle of the film. This research demonstrates how 3D characterization offers a better understanding of DSA processes, leading to better design and fabrication of directing templates.
Proceedings of SPIE | 2015
Tamar Segal-Peretz; Jonathan Winterstein; Jiaxing Ren; Mahua Biswas; J. Alexander Liddle; Jeffery W. Elam; Leonidas E. Ocola; Ralu Divan; Nestor J. Zaluzec; Paul F. Nealey
Directed self-assembly (DSA) of block copolymers (BCPs) is a rising technique for sub-20 nm patterning. To fully harness DSA capabilities for patterning, a detailed understanding of the three dimensional (3D) structure of BCPs is needed. By combining sequential infiltration synthesis (SIS) and scanning transmission electron microscopy (STEM) tomography, we have characterized the 3D structure of self-assembled and DSA BCPs films with high precision and resolution. SIS is an emerging technique for enhancing pattern transfer in BCPs through the selective growth of inorganic material in polar BCP domains. Here, Al2O3 SIS was used to enhance the imaging contrast and enable tomographic characterization of BCPs with high fidelity. Moreover, by utilizing SIS for both 3D characterization and hard mask fabrication, we were able to characterize the BCP morphology as well as the alumina nanostructures that would be used for pattern transfer.
ACS Applied Materials & Interfaces | 2017
Daniel F. Sunday; Jiaxing Ren; Christopher Liman; Lance Williamson; Roel Gronheid; Paul F. Nealey; R. Joseph Kline
The directed self-assembly (DSA) of block copolymers (BCPs) is a potential solution for patterning critical features for integrated circuits at future technology nodes. For this process to be implemented, there needs to be a better understanding of how the template guides the assembly and induces subsurface changes in the lamellar structure. Using a rotational transmission X-ray scattering measurement coupled with soft X-rays to improve contrast between polymer components, the impact of the ratio of the guiding stripe width (W) to the BCP pitch (L0) was investigated. For W/L0 < 1, continuous vertical lamella were observed, with some fluctuations in the interface profile near the template that smoothed out further up the structure. Near W/L0 ≈ 1.5, the arrangement of the lamella shifted, moving from polystyrene centered on the guiding stripe to poly(methyl methacrylate) centered on the guiding stripe.
Journal of Materials Chemistry | 2017
Christopher G. Arges; Yu Kambe; Moshe Dolejsi; Guang-Peng Wu; Tamar Segal-Pertz; Jiaxing Ren; Chi Cao; Gordon S. W. Craig; Paul F. Nealey
Block copolymer electrolytes (BCEs) represent an attractive choice as solid-state ionic conductors for electrochemical technologies used in energy storage and conversion, water treatment, sensors, and data storage and processing. Unlocking the maximum ionic conductivity of BCEs requires an intimate understanding as to how the microphase separated structure influences transport properties. However, elucidating such knowledge remains elusive due to the challenging task of precisely engineering BCEs with a defined structure in bulk materials. In this work, we examined BCEs in a thin film format because it was amenable to attaining BCEs with a desired nanostructure. Specifically, we systematically investigated anion-conducting BCEs with different degrees of connectivity of the ionic domains. For the first time, we demonstrate that increasing terminal defects in the ionic domain from 1 terminal defect per μm2 to 20 terminal defects per μm2 (a relatively small amount of defects) decreased ionic conductivity by 67% compared to the maximum value attained. Conversely, maximizing ionic domain connectivity increased the ionic conductivity by two-fold over a non-ordered BCE film. These experiments highlight that microphase separation alone was insufficient for ameliorating ionic conductivity in BCEs. Rather, microphase separation coupled with complete ionic domain connectivity realized BCEs with significantly enhanced ionic conductivity.
ACS Applied Materials & Interfaces | 2018
Jiaxing Ren; Chun Zhou; Xuanxuan Chen; Moshe Dolejsi; Gordon S. W. Craig; Paulina Alejandra Rincon Delgadillo; Tamar Segal-Peretz; Paul F. Nealey
Directed self-assembly (DSA) of block copolymers (BCPs) can achieve perfectly aligned structures at thermodynamic equilibrium, but the self-assembling morphology can become kinetically trapped in defective states. Understanding and optimizing the kinetic pathway toward domain alignment is crucial for enhancing process throughput and lowering defectivity to levels required for semiconductor manufacturing, but there is a dearth of experimental, three-dimensional studies of the kinetic pathways in DSA. Here, we combined arrested annealing and TEM tomography to probe the kinetics and structural evolution in the chemoepitaxy DSA of PS- b-PMMA with density multiplication. During the initial stages of annealing, BCP domains developed independently at first, with aligned structures at the template interface and randomly oriented domains at the top surface. As the grains coarsened, the assembly became cooperative throughout the film thickness, and a metastable stitch morphology was formed, representing a kinetic barrier. The stitch morphology had a three-dimensional structure consisting of both perpendicular and parallel lamellae. On the basis of the mechanistic information, we studied the effect of key design parameters on the kinetics and evolution of structures in DSA. Three types of structural evolutions were observed at different film thicknesses: (1) immediate alignment and fast assembly when thickness < L0 ( L0 = BCP natural periodicity); (2) formation of stitch morphology for 1.25-1.45 L0; (3) fingerprint formation when thickness >1.64 L0. We found that the DSA kinetics can be significantly improved by avoiding the formation of the metastable stitch morphology. Increasing template topography also enhanced the kinetics by increasing the PMMA guiding surface area. A combination of 0.75 L0 BCP thickness and 0.50 L0 template topography achieved perfect alignment over 100 times faster than the baseline process. This research demonstrates that an improved understanding of the evolution of structures during DSA can significantly improve the DSA process.
Molecular Systems Design & Engineering | 2018
Adam F. Hannon; Daniel F. Sunday; Alec Bowen; Gurdaman S. Khaira; Jiaxing Ren; Paul F. Nealey; Juan J. de Pablo; R. Joseph Kline
A block copolymer self-consistent field theory (SCFT) model is used for direct analysis of experimental X-ray scattering data obtained from thin films of polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) made from directed self-assembly. In a departure from traditional approaches, which reconstruct the real space structure using simple geometric shapes, we build on recent work that has relied on physics-based models to determine shape profiles and extract thermodynamic processing information from the scattering data. More specifically, an SCFT model, coupled to a covariance matrix adaptation evolutionary strategy (CMAES), is used to find the set of simulation parameters for the model that best reproduces the scattering data. The SCFT model is detailed enough to capture the essential physics of the copolymer self-assembly, but sufficiently simple to rapidly produce structure profiles needed for interpreting the scattering data. The ability of the model to produce a matching scattering profile is assessed, and several improvements are proposed in order to more accurately recreate the experimental observations. The predicted parameters are compared to those extracted from model fits via additional experimental methods and with predicted parameters from direct particle-based simulations of the same model, which incorporate the effects of fluctuations. The Flory-Huggins interaction parameter for PS-b-PMMA is found to be in agreement with reported ranges for this material. These results serve to strengthen the case for relying on physics-based models for direct analysis of scattering and light signal based experiments.
Journal of Micro-nanolithography Mems and Moems | 2018
Chun Zhou; Tsuyoshi Kurosawa; Takahiro Dazai; Jan Doise; Jiaxing Ren; Cody Bezik; Tamar Segal-Peretz; Akiyoshi Yamazaki; Roel Gronheid; Paulina Rincon-Delgadillo; Juan J. de Pablo; Paul F. Nealey
Acquiring three-dimensional information becomes increasingly important for the development of block copolymer (BCP) directed self-assembly (DSA) lithography, as 2D imaging is no longer sufficient to describe the 3D nature of DSA morphology and probe hidden structures under the surface. In this study, using post-DSA membrane fabrication technique and STEM (scanning transmission electron microscopy) tomography we were able to characterize the 3D structures of BCP in graphoepitaxial DSA hole shrink process. Different DSA structures of singlets formed in templated holes with different surface chemistry and geometry were successfully captured and their 3D shapes were reconstructed from tomography data. The results reveal that strong PS-preferential sidewalls are necessary to create vertical DSA cylinders and that template size outside of process window could result in defective DSA results in three dimensions. Our study as well as the established 3D metrology would greatly help to develop a fundamental understanding of the key DSA factors for optimization of the graphoepitaxial hole shrink process.
Proceedings of SPIE | 2017
Daniel F. Sunday; Christopher Liman; Adam F. Hannon; Jiaxing Ren; Xuanxuan Chen; Hyo Seon Suh; Juan J. de Pablo; Paul F. Nealey; R. Joseph Kline
The semiconductor industry is evaluating a variety of approaches for the cost efficient production of future processing and memory generations. Amongst the technologies being explored are multiple patterning steps, extreme ultraviolet (EUV) lithography, multiple-beam electron beam lithography and the directed self-assembly (DSA) of block copolymers (BCPs). BCP DSA utilizes a chemical or topographical template to induce long range order in a thin film of BCP which enhances the resolution of the original pattern. The characterization of buried structure within a DSA BCP film is challenging due to the lack of contrast between the organic materials. Critical-dimension small angle x-ray scattering (CDSAXS) measurements were performed on DSA BCP films, using soft X-rays to tune the contrast, in order to understand the relationship between template structure and film morphology.1 The results of these measurements show that as the width of the guiding stripe widens the arrangement of the BCP on the guiding stripe inverts, shifting from the A block being centered on the guiding stripe to the B block being centered on the guiding stripe. The initial results of integration of mean field simulations into the analysis of scattering data will also be discussed. In addition to examining the BCP structure with CDSAXS, soft X-ray reflectivity2 measurements were performed on BCP to better understand the relationship between interface width for systems with alternative architectures (triblocks) and additives (polymers/ionic liquids). The addition of a selectively associating additive increases the interaction parameter between the two blocks, resulting in the reduction of the interface width and access to smaller pitches. The use of soft X-ray reflectivity allows the evaluation of the distribution of the additive. (1) Sunday, D. F.; Hammond, M. R.; Wang, C.; Wu, W.; Delongchamp, D. M.; Tjio, M.; Cheng, J. Y.; Kline, R. J.; Pitera, J. W. Determination of the Internal Morphology of Nanostructures Patterned by Directed Self Assembly. ACS Nano 2014, 8, 8426–8437. (2) Sunday, D. F.; Kline, R. J. Reducing Block Copolymer Interfacial Widths through Polymer Additives. Macromolecules 2015, 48, 679–686.
ACS Nano | 2015
Tamar Segal-Peretz; Jonathan Winterstein; Manolis Doxastakis; Abelardo Ramírez-Hernández; Mahua Biswas; Jiaxing Ren; Hyo Seon Suh; Seth B. Darling; J. Alexander Liddle; Jeffrey W. Elam; Juan J. de Pablo; Nestor J. Zaluzec; Paul F. Nealey
Advanced Materials Interfaces | 2015
Takejiro Inoue; Dustin W. Janes; Jiaxing Ren; Hyo Seon Suh; Xuanxuan Chen; Christopher J. Ellison; Paul F. Nealey