Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jibao He is active.

Publication


Featured researches published by Jibao He.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma

Santosh S. Dhule; Patrice Penfornis; Trivia Frazier; Ryan Walker; Joshua Feldman; Grace Tan; Jibao He; Alina M. Alb; Vijay T. John; Radhika Pochampally

UNLABELLED The delivery of curcumin, a broad-spectrum anticancer drug, has been explored in the form of liposomal nanoparticles to treat osteosarcoma (OS). Curcumin is water insoluble and an effective delivery route is through encapsulation in cyclodextrins followed by a second encapsulation in liposomes. Liposomal curcumins potential was evaluated against cancer models of mesenchymal (OS) and epithelial origin (breast cancer). The resulting 2-Hydroxypropyl-γ-cyclodextrin/curcumin - liposome complex shows promising anticancer potential both in vitro and in vivo against KHOS OS cell line and MCF-7 breast cancer cell line. An interesting aspect is that liposomal curcumin initiates the caspase cascade that leads to apoptotic cell death in vitro in comparison with DMSO-curcumin induced autophagic cell death. In addition, the efficiency of the liposomal curcumin formulation was confirmed in vivo using a xenograft OS model. Curcumin-loaded γ-cyclodextrin liposomes indicate significant potential as delivery vehicles for the treatment of cancers of different tissue origin. FROM THE CLINICAL EDITOR Curcumin-loaded γ-cyclodextrin liposomes were demonstrated in vitro to have significant potential as delivery vehicles for the treatment of cancers of mesenchymal and epithelial origin. Differences between mechanisms of cell death were also evaluated.


Langmuir | 2013

Superparamagnetic Iron Oxide Nanoparticles with Variable Size and an Iron Oxidation State as Prospective Imaging Agents

Pavel Kucheryavy; Jibao He; Vijay T. John; Pawan Maharjan; Leonard Spinu; Galina Goloverda; Vladimir Kolesnichenko

Magnetite nanoparticles in the size range of 3.2-7.5 nm were synthesized in high yields under variable reaction conditions using high-temperature hydrolysis of the precursor iron(II) and iron(III) alkoxides in diethylene glycol solution. The average sizes of the particles were adjusted by changing the reaction temperature and time and by using a sequential growth technique. To obtain γ-iron(III) oxide particles in the same range of sizes, magnetite particles were oxidized with dry oxygen in diethylene glycol at room temperature. The products were characterized by DLS, TEM, X-ray powder diffractometry, TGA, chemical analysis, and magnetic measurements. NMR r(1) and r(2) relaxivity measurements in water and diethylene glycol (for OH and CH(2) protons) have shown a decrease in the r(2)/r(1) ratio with the particle size reduction, which correlates with the results of magnetic measurements on magnetite nanoparticles. Saturation magnetization of the oxidized particles was found to be 20% lower than that for Fe(3)O(4) with the same particle size, but their r(1) relaxivities are similar. Because the oxidation of magnetite is spontaneous under ambient conditions, it was important to learn that the oxidation product has no disadvantages as compared to its precursor and therefore may be a better prospective imaging agent because of its chemical stability.


Environmental Science & Technology | 2011

Multifunctional Iron−Carbon Nanocomposites through an Aerosol-Based Process for the In Situ Remediation of Chlorinated Hydrocarbons

Jingjing Zhan; Igor Kolesnichenko; Bhanukiran Sunkara; Jibao He; Gary L. McPherson; Gerhard Piringer; Vijay T. John

Spherical iron-carbon nanocomposites were developed through a facile aerosol-based process with sucrose and iron chloride as starting materials. These composites exhibit multiple functionalities relevant to the in situ remediation of chlorinated hydrocarbons such as trichloroethylene (TCE). The distribution and immobilization of iron nanoparticles on the surface of carbon spheres prevents zerovalent nanoiron aggregation with maintenance of reactivity. The aerosol-based carbon microspheres allow adsorption of TCE, thus removing dissolved TCE rapidly and facilitating reaction by increasing the local concentration of TCE in the vicinity of iron nanoparticles. The strongly adsorptive property of the composites may also prevent release of any toxic chlorinated intermediate products. The composite particles are in the optimal range for transport through groundwater saturated sediments. Furthermore, those iron-carbon composites can be designed at low cost, the process is amenable to scale-up for in situ application, and the materials are intrinsically benign to the environment.


ACS Applied Materials & Interfaces | 2013

Attachment of a hydrophobically modified biopolymer at the oil-water interface in the treatment of oil spills.

Pradeep Venkataraman; Jingjian Tang; Etham Frenkel; Gary L. McPherson; Jibao He; Srinivasa R. Raghavan; Vladimir Kolesnichenko; Arijit Bose; Vijay T. John

The stability of crude oil droplets formed by adding chemical dispersants can be considerably enhanced by the use of the biopolymer, hydrophobically modified chitosan. Turbidimetric analyses show that emulsions of crude oil in saline water prepared using a combination of the biopolymer and the well-studied chemical dispersant (Corexit 9500A) remain stable for extended periods in comparison to emulsions stabilized by the dispersant alone. We hypothesize that the hydrophobic residues from the polymer preferentially anchor in the oil droplets, thereby forming a layer of the polymer around the droplets. The enhanced stability of the droplets is due to the polymer layer providing an increase in electrostatic and steric repulsions and thereby a large barrier to droplet coalescence. Our results show that the addition of hydrophobically modified chitosan following the application of chemical dispersant to an oil spill can potentially reduce the use of chemical dispersants. Increasing the molecular weight of the biopolymer changes the rheological properties of the oil-in-water emulsion to that of a weak gel. The ability of the biopolymer to tether the oil droplets in a gel-like matrix has potential applications in the immobilization of surface oil spills for enhanced removal.


Journal of Pharmaceutical Sciences | 2010

Hydration Effects on Skin Microstructure as Probed by High-Resolution Cryo-Scanning Electron Microscopy and Mechanistic Implications to Enhanced Transcutaneous Delivery of Biomacromolecules

Grace Tan; Peng Xu; Louise B. Lawson; Jibao He; Lucia C. Freytag; John D. Clements; Vijay T. John

Although hydration is long known to improve the permeability of skin, penetration of macromolecules such as proteins is limited and the understanding of enhanced transport is based on empirical observations. This study uses high-resolution cryo-scanning electron microscopy to visualize microstructural changes in the stratum corneum (SC) and enable a mechanistic interpretation of biomacromolecule penetration through highly hydrated porcine skin. Swollen corneocytes, separation of lipid bilayers in the SC intercellular space to form cisternae, and networks of spherical particulates are observed in porcine skin tissue hydrated for a period of 4-10 h. This is explained through compaction of skin lipids when hydrated, a reversal in the conformational transition from unilamellar liposomes in lamellar granules to lamellae between keratinocytes when the SC skin barrier is initially established. Confocal microscopy studies show distinct enhancement in penetration of fluorescein isothiocyanate-bovine serum albumin (FITC-BSA) through skin hydrated for 4-10 h, and limited penetration of FITC-BSA once skin is restored to its natively hydrated structure when exposed to the environment for 2-3 h. These results demonstrate the effectiveness of a 4-10 h hydration period to enhance transcutaneous penetration of large biomacromolecules without permanently damaging the skin.


Environmental Science & Technology | 2009

Multifunctional Colloidal Particles for in Situ Remediation of Chlorinated Hydrocarbons

Jingjing Zhan; Bhanukiran Sunkara; Lynn Le; Vijay T. John; Jibao He; Gary L. McPherson; Gerhard Piringer; Yunfeng Lu

Effective in situ injection technology for the remediation of dense nonaqueous phase liquids (DNAPLs) such as trichloroethylene (TCE) requires the use of decontamination agents that effectively migrate through the soil media and react efficiently with dissolved TCE and bulk TCE. We describe the use of a novel decontamination system containing highly uniform carbon microspheres in the optimal size range for transport through the soil. The microspheres are enveloped in a polyelectrolyte (carboxymethyl cellulose, CMC) to which a bimetallic nanoparticle system of zero-valent iron and Pd is attached. The carbon serves as a strong adsorbent to TCE, while the bimetallic nanoparticle system provides the reactive component. The polyelectrolyte serves to stabilize the carbon microspheres in aqueous solution. The overall system resembles a colloidal micelle with a hydrophilic shell (polyelectrolyte coating) and hard hydrophobic core (carbon). In contact with bulk TCE, there is a sharp partitioning of the system to the TCE side of the interface due to the hydrophobicity of the core. These multifunctional systems appear to satisfy criteria related to remediation and are made with potentially environmentally benign materials.


Langmuir | 2014

Release of surfactant cargo from interfacially-active halloysite clay nanotubes for oil spill remediation.

Olasehinde Owoseni; Emmanuel Nyankson; Yueheng Zhang; Samantha J. Adams; Jibao He; Gary L. McPherson; Arijit Bose; Ram B. Gupta; Vijay T. John

Naturally occurring halloysite clay nanotubes are effective in stabilizing oil-in-water emulsions and can serve as interfacially-active vehicles for delivering oil spill treating agents. Halloysite nanotubes adsorb at the oil-water interface and stabilize oil-in-water emulsions that are stable for months. Cryo-scanning electron microscopy (Cryo-SEM) imaging of the oil-in-water emulsions shows that these nanotubes assemble in a side-on orientation at the oil-water interface and form networks on the interface through end-to-end linkages. For application in the treatment of marine oil spills, halloysite nanotubes were successfully loaded with surfactants and utilized as an interfacially-active vehicle for the delivery of surfactant cargo. The adsorption of surfactant molecules at the interface serves to lower the interfacial tension while the adsorption of particles provides a steric barrier to drop coalescence. Pendant drop tensiometry was used to characterize the dynamic reduction in interfacial tension resulting from the release of dioctyl sulfosuccinate sodium salt (DOSS) from halloysite nanotubes. At appropriate surfactant compositions and loadings in halloysite nanotubes, the crude oil-saline water interfacial tension is effectively lowered to levels appropriate for the dispersion of oil. This work indicates a novel concept of integrating particle stabilization of emulsions together with the release of chemical surfactants from the particles for the development of an alternative, cheaper, and environmentally-benign technology for oil spill remediation.


Langmuir | 2011

The Synthesis of Mesoporous TiO2/SiO2/Fe2O3 Hybrid Particles Containing Micelle- Induced Macropores through an Aerosol Based Process

Xiangcun Li; Vijay T. John; Jingjing Zhan; Gaohong He; Jibao He; Leonard Spinu

Mesoporous SiO(2)/TiO(2)/Fe(2)O(3) particles containing macropores of about 50 nm in diameter have been prepared by an aerosol process using cetyltrimethylammonium bromide (CTAB) as a templating agent. In contrast to the traditional templating effect of CTAB to form ordered mesoporous silicas, the morphology here is vastly different due to the presence of precursor iron salts. The particles have mesoporosity templated by CTAB but additionally have large voids leading to a combined macroporous and mesoporous structure. The morphology is explained through the formation of colloidal structures containing species such as CTA(+)X(-1)Fe(3+) colloids in the aerosol droplets, indicating of a salt bridging effect. This dual porosity has applied implications, as the macropores provide easy entry to the particle interior in potentially diffusion limited situations. Furthermore, the particles encapsulate Fe(2)O(3) and contain TiO(2) leading to the dual functional properties of magnetic response and photocatalytic activity.


Molecular Pharmaceutics | 2014

The Combined Effect of Encapsulating Curcumin and C6 Ceramide in Liposomal Nanoparticles against Osteosarcoma

Santosh S. Dhule; Patrice Penfornis; Jibao He; Michael R. Harris; Treniece Terry; Vijay T. John; Radhika Pochampally

This study examines the antitumor potential of curcumin and C6 ceramide (C6) against osteosarcoma (OS) cell lines when both are encapsulated in the bilayer of liposomal nanoparticles. Three liposomal formulations were prepared: curcumin liposomes, C6 liposomes and C6-curcumin liposomes. Curcumin in combination with C6 showed 1.5 times enhanced cytotoxic effect in the case of MG-63 and KHOS OS cell lines, in comparison with curcumin liposomes alone. Importantly, C6-curcumin liposomes were found to be less toxic on untransformed primary human cells (human mesenchymal stem cells) in comparison to OS cell lines. In addition, cell cycle assays on a KHOS cell line after treatment revealed that curcumin only liposomes induced G2/M arrest by upregulation of cyclin B1, while C6 only liposomes induced G1 arrest by downregulation of cyclin D1. C6-curcumin liposomes induced G2/M arrest and showed a combined effect in the expression levels of cyclin D1 and cyclin B1. The efficiency of the preparations was tested in vivo using a human osteosarcoma xenograft assay. Using pegylated liposomes to increase the plasma half-life and tagging with folate (FA) for targeted delivery in vivo, a significant reduction in tumor size was observed with C6-curcumin-FA liposomes. The encapsulation of two water insoluble drugs, curcumin and C6, in the lipid bilayer of liposomes enhances the cytotoxic effect and validates the potential of combined drug therapy.


ACS Applied Materials & Interfaces | 2012

Highly Porous Acrylonitrile-Based Submicron Particles for UO22+ Absorption in an Immunosensor Assay

Nurettin Sahiner; Haini Yu; Grace Tan; Jibao He; Vijay T. John; Diane A. Blake

Our laboratory has previously reported an antibody-based assay for hexavalent uranium (UO(2)(2+)) that could be used on-site to rapidly assess uranium contamination in environmental water samples (Melton, S. J.; et al. Environ. Sci. Technol. 2009, 43, 6703-6709). To extend the utility of this assay to less-characterized sites of uranium contamination, we required a uranium-specific adsorbent that would rapidly remove the uranium from groundwater samples, while leaving the concentrations of other ions in the groundwater relatively unaltered. This study describes the development of hydrogel particles containing amidoxime groups that can rapidly and selectively facilitate the uptake of uranyl ions. A miniemulsion polymerization technique using SDS micelles was employed for the preparation of the hydrogel as linked submicrometer particles. In polymerization, acrylonitrile was used as the initial monomer, ethylene glycol dimethacrylate as the crosslinker and 2-hydroxymethacrylate, 1-vinyl-2-pyrrolidone, acrylic acid, or methacrylic acid were added as co-monomers after the initial seed polymerization of acrylonitrle. The particles were characterized by transmission electron spectroscopy, scanning electron microscopy (SEM) and cryo-SEM. The amidoximated particles were superior to a commercially available resin in their ability to rapidly remove dissolved UO(2)(2+) from spiked groundwater samples.

Collaboration


Dive into the Jibao He's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arijit Bose

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yunfeng Lu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonard Spinu

University of New Orleans

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge