Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jie-Jie Chen is active.

Publication


Featured researches published by Jie-Jie Chen.


Bioresource Technology | 2012

Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution.

Pei Liu; Wu-Jun Liu; Hong Jiang; Jie-Jie Chen; Wen-Wei Li; Han-Qing Yu

In this work, bio-char, a mass productive by-product of biomass fast pyrolysis, was adopted as an adsorbent to remove tetracycline (TC) from aqueous solution. To enhance the adsorption capacity, a simple modification of bio-char with acid and alkali was carried out. Bio-char samples were characterized by Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption isotherm. The results show that the alkali treated bio-char possesses larger surface area than those of raw and acid treated bio-chars, and accordingly exhibits a more excellent adsorption performance (58.8 mg/g) than the other two bio-chars and other adsorbents reported previously. The graphite-like structure of bio-char facilitates the formation of π-π interactions between ring structure in tetracycline molecule and graphite-like sheets. The surface area showed significant effects on TC adsorption as well as O-containing functional groups, whereas the initial pH of solution has small effects on TC adsorption under the experimental conditions.


Nature Communications | 2015

Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction

Dan-Ni Pei; Li Gong; Ai-Yong Zhang; Xing Zhang; Jie-Jie Chen; Yang Mu; Han-Qing Yu

The cathodic material plays an essential role in oxygen reduction reaction for energy conversion and storage systems. Titanium dioxide, as a semiconductor material, is usually not recognized as an efficient oxygen reduction electrocatalyst owning to its low conductivity and poor reactivity. Here we demonstrate that nano-structured titanium dioxide, self-doped by oxygen vacancies and selectively exposed with the high-energy {001} facets, exhibits a surprisingly competitive oxygen reduction activity, excellent durability and superior tolerance to methanol. Combining the electrochemical tests with density-functional calculations, we elucidate the defect-centred oxygen reduction reaction mechanism for the superiority of the reductive {001}-TiO2−x nanocrystals. Our findings may provide an opportunity to develop a simple, efficient, cost-effective and promising catalyst for oxygen reduction reaction in energy conversion and storage technologies.


Environmental Science & Technology | 2012

Improving Biogas Separation and Methane Storage with Multilayer Graphene Nanostructure via Layer Spacing Optimization and Lithium Doping: A Molecular Simulation Investigation

Jie-Jie Chen; Wen-Wei Li; Xue-Liang Li; Han-Qing Yu

Methane is a desirable alternative to conventional fossil fuels, and also a main component of biogas from anaerobic fermentation of organic wastes. However, its relatively lower purity and poor storage by existing adsorbent materials negatively affect its wide application. Thus, efficient, cost-effective, and safe adsorbent materials for methane purification and storage are highly desired. In this study, multilayer graphene nanostructures (MGNs) with optimized structure are investigated as a potential adsorbent for this purpose. The effects of layer distance and Li doping on MGN performance in terms of methane storage and acid gas (H(2)S and CO(2)) separation from biogas are examined by molecular simulations. The mechanisms for the interactions between gas molecules and substrates are elucidated by analyzing the binding energy, geometric structures, and charge distribution from the first-principles calculations. The results show that nonhydrocarbons in biogas can be effectively separated using Li-doped MGNs with the optimal layer distance of 0.68 nm, and then the pure methane gas can be stored in MGNs with capacity satisfying the DOE target. This work offers a molecular-level insight into the interactions between gas molecules and MGNs and might provide useful information for development of new materials for methane purification and storage.


ACS Applied Materials & Interfaces | 2015

Synthesis of Pt-Loaded Self-Interspersed Anatase TiO2 with a Large Fraction of (001) Facets for Efficient Photocatalytic Nitrobenzene Degradation

Wei-Kang Wang; Jie-Jie Chen; Wen-Wei Li; Dan-Ni Pei; Xing Zhang; Han-Qing Yu

TiO2 is capable of directly utilizing solar energy for sustainable energy harvest and water purification. Facet-dependent performance of TiO2 has attracted enormous interests due to its tunable photocatalytic activity toward photoredox transformations, but information about the noble-metal-loaded TiO2 for its facet-dependent photocatalytic performance, especially in pollutant degradation systems, is limited. In this work, inspired by our previous theoretical calculations about the roles of the crystal surface in Pt-loaded TiO2 in its enhanced photocatalytic capacity, TiO2 nanocrystals with interspersed polyhedron nanostructures and coexposed (001) and (101) surfaces as a support of Pt nanoparticles are prepared in a simple and relatively green route. Also, their performance for photocatalytic degradation of nitrobenzene (NB), a model organic pollutant, is explored. The experimental results demonstrate that the NB photodegradation and photoconversion efficiencies are significantly enhanced by uniformly loading Pt nanoparticles on the crystal surfaces, but the Pt nanoparticles deposited on only the (101) surface have no contribution to the improved NB photodegradation. Furthermore, the liquid chromatography mass spectrometry results also show that NB photodegradation tends to proceed on the (001) surface of Pt/TiO2 for the generation of nitrophenol intermediates through the photooxidation pathway. This work provides a new route to design and construct advanced photocatalysts toward pollutant photoredox conversions and deepens our fundamental understanding about crystal surface engineering.


Scientific Reports | 2016

Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature.

Wei-Kang Wang; Jie-Jie Chen; Xing Zhang; Yu-Xi Huang; Wen-Wei Li; Han-Qing Yu

The surface phase junction of nanocrystalline TiO2 plays an essential role in governing its photocatalytic activity. Thus, facile and simple methods for preparing phase-junction TiO2 photocatalysts are highly desired. In this work, we show that phase-junction TiO2 is directly synthesized from Ti foil by using a simple calcination method with hydrothermal solution as the precursor below the phase transition temperature. Moreover, the ratio of rutile to anatase in the TiO2 samples could be readily tuned by changing the ratio of weight of Ti foil to HCl, which is used as the hydrothermal precursor, as confirmed by the X-ray diffraction analysis. In the photocatalytic reaction by the TiO2 nanocomposite, a synergistic effect between the two phases within a certain range of the ratio is clearly observed. The results suggest that an appropriate ratio of anatase to rutile in the TiO2 nanocomposite can create more efficient solid-solid interfaces upon calcination, thereby facilitating interparticle charge transfer in the photocatalysis.


Scientific Reports | 2013

A photometric high-throughput method for identification of electrochemically active bacteria using a WO3 nanocluster probe.

Shi-Jie Yuan; Hui He; Guo-Ping Sheng; Jie-Jie Chen; Zhong-Hua Tong; Yuan-Yuan Cheng; Wen-Wei Li; Zhi-Qi Lin; Feng Zhang; Han-Qing Yu

Electrochemically active bacteria (EAB) are ubiquitous in environment and have important application in the fields of biogeochemistry, environment, microbiology and bioenergy. However, rapid and sensitive methods for EAB identification and evaluation of their extracellular electron transfer ability are still lacking. Herein we report a novel photometric method for visual detection of EAB by using an electrochromic material, WO3 nanoclusters, as the probe. This method allowed a rapid identification of EAB within 5 min and a quantitative evaluation of their extracellular electron transfer abilities. In addition, it was also successfully applied for isolation of EAB from environmental samples. Attributed to its rapidness, high reliability, easy operation and low cost, this method has high potential for practical implementation of EAB detection and investigations.


Nature Communications | 2013

Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide

Shi-Jie Yuan; Jie-Jie Chen; Zhi-Qi Lin; Wen-Wei Li; Guo-Ping Sheng; Han-Qing Yu

The concentration of nitrate in aquatic systems is rising with the development of modern industry and agriculture, causing a cascade of environmental problems. Here we describe a previously unreported nitrate formation process. Both indoor and outdoor experiments are conducted to demonstrate that nitrate may be formed from abundant atmospheric nitrogen and oxygen on nano-sized titanium dioxide surfaces under UV or sunlight irradiation. We suggest that nitric oxide is an intermediate product in this process, and elucidate its formation mechanisms using first-principles density functional theory calculations. Given the expanding use of titanium dioxide worldwide, such a titanium dioxide-mediated photocatalysis process may reveal a potentially underestimated source of nitrate in the environment, which on one hand may lead to an increasing environmental pollution concern, and on the other hand may provide an alternative, gentle and cost-effective method for nitrate production.


Scientific Reports | 2015

Experimental and Theoretical Demonstrations for the Mechanism behind Enhanced Microbial Electron Transfer by CNT Network

Xian-Wei Liu; Jie-Jie Chen; Yu-Xi Huang; Xue-Fei Sun; Guo-Ping Sheng; Dao-Bo Li; Lu Xiong; Yuan-Yuan Zhang; Feng Zhao; Han-Qing Yu

Bioelectrochemical systems (BESs) share the principle of the microbially catalyzed anodic substrate oxidation. Creating an electrode interface to promote extracellular electron transfer from microbes to electrode and understanding such mechanisms are crucial for engineering BESs. In this study, significantly promoted electron transfer and a 10-times increase in current generation in a BES were achieved by the utilization of carbon nanotube (CNT) network, compared with carbon paper. The mechanisms for the enhanced current generation with the CNT network were elucidated with both experimental approach and molecular dynamic simulations. The fabricated CNT network was found to be able to substantially enhance the interaction between the c-type cytochromes and solid electron acceptor, indicating that the direct electron transfer from outer-membrane decaheme c-type cytochromes to electrode might occur. The results obtained in this study will benefit for the optimized design of new materials to target the outer membrane proteins for enhanced electron exchanges.


Nature Protocols | 2014

A plate-based electrochromic approach for the high-throughput detection of electrochemically active bacteria

Shi-Jie Yuan; Wen-Wei Li; Yuan-Yuan Cheng; Hui He; Jie-Jie Chen; Zhong-Hua Tong; Zhi-Qi Lin; Feng Zhang; Guo-Ping Sheng; Han-Qing Yu

Electrochemically active bacteria (EAB) have the ability to transfer electrons to electron acceptors located outside the cell, and they are widely present in diverse environments. In spite of their important roles in geochemical cycles, environmental remediation and electricity generation, so far, only a limited number and types of EAB have been isolated and characterized. Thus, effective and rapid EAB identification methods are highly desirable. In this protocol, we describe a photometric protocol for the visualization and high-throughput identification and isolation of EAB. The protocol relies on the fast electron acquisition and color change ability of an electrochromic material, namely a tungsten trioxide (WO3) nanorod assembly. The extracellular electron transfer (EET) from EAB to the WO3 nanorod assembly probe is accompanied by a bioelectrochromic reaction made evident by the color change of the probe. This protocol enables researchers to rapidly identify EAB and evaluate their EET ability either qualitatively with the naked eye or quantitatively by image analysis. We have also successfully used this protocol to isolate EAB from environmental samples. The time needed to complete this protocol is ∼2 d, with the actual EAB identification process taking about 5 min.


ACS Applied Materials & Interfaces | 2015

Roles of Crystal Surface in Pt-Loaded Titania for Photocatalytic Conversion of Organic Pollutants: A First-Principle Theoretical Calculation

Jie-Jie Chen; Wei-Kang Wang; Wen-Wei Li; Dan-Ni Pei; Han-Qing Yu

Titania modified with nanosized metallic clusters is found to substantially enhance its photocatalytic capacity for renewable energy generation and environmental purification, but the underlying mechanism, especially the roles of crystal surface in noble-metal-loaded TiO2, remain unclear. In this work, such roles in the Pt-loaded anatase TiO2 for the photocatalytic conversion of nitrobenzene (NB), a model pollutant, are explored by first-principle calculations. The theoretical calculations reveal that the Pt-TiO2 complex has a higher catalytic activity toward NB conversion than pure Pt clusters, and the (001) facets of TiO2 in this complex tend to accumulate more positively charged holes and thus have a higher photocatalytic activity than the (101) facets. Furthermore, the thermodynamic and kinetic results also show that the Pt cluster loaded on the (001) surface of anatase TiO2 is favored for NB conversion in the photooxidation pathway. This work deepens our fundamental understanding on the evolution of molecule-photocatalyst interface and provides implications for designing and preparing photocatalysts.

Collaboration


Dive into the Jie-Jie Chen's collaboration.

Top Co-Authors

Avatar

Han-Qing Yu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Wen-Wei Li

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Guo-Ping Sheng

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Wei-Kang Wang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Xing Zhang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Yu-Xi Huang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Shi-Jie Yuan

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Zhong-Hua Tong

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Dan-Ni Pei

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Dao-Bo Li

University of Science and Technology of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge