Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wen-Wei Li is active.

Publication


Featured researches published by Wen-Wei Li.


Energy and Environmental Science | 2013

Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies

Wen-Wei Li; Han-Qing Yu; Zhen He

Microbial fuel cells (MFCs) have been conceived and intensively studied as a promising technology to achieve sustainable wastewater treatment. However, doubts and debates arose in recent years regarding the technical and economic viability of this technology on a larger scale and in a real-world applications. Hence, it is time to think about and examine how to recalibrate this technologys role in a future paradigm of sustainable wastewater treatment. In the past years, many good ideas/approaches have been proposed and investigated for MFC application, but information is scattered. Various review papers were published on MFC configuration, substrates, electrode materials, separators and microbiology but there is lack of critical thinking and systematic analysis of MFC application niche in wastewater treatment. To systematically formulate a strategy of (potentially) practical MFC application and provide information to guide MFC development, this perspective has critically examined and discussed the problems and challenges for developing MFC technology, and identified a possible application niche whereby MFCs can be rationally incorporated into the treatment process. We propose integration of MFCs with other treatment technologies to form an MFC-centered treatment scheme based on thoroughly analyzing the challenges and opportunities, and discuss future efforts to be made for realizing sustainable wastewater treatment.


Bioresource Technology | 2011

Recent advances in the separators for microbial fuel cells.

Wen-Wei Li; Guo-Ping Sheng; Xian-Wei Liu; Han-Qing Yu

Separator plays an important role in microbial fuel cells (MFCs). Despite of the rapid development of separators in recent years, there are remaining barriers such as proton transfer limitation and oxygen leakage, which increase the internal resistance and decrease the MFC performance, and thus limit the practical application of MFCs. In this review, various separator materials, including cation exchange membrane, anion exchange membrane, bipolar membrane, microfiltration membrane, ultrafiltration membranes, porous fabrics, glass fibers, J-Cloth and salt bridge, are systematically compared. In addition, recent progresses in separator configuration, especially the development of separator electrode assemblies, are summarized. The advances in separator materials and configurations have opened up new promises to overcome these limitations, but challenges remain for the practical application. Here, an outlook for future development and scaling-up of MFC separators is presented and some suggestions are highlighted.


Bioresource Technology | 2012

Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution.

Pei Liu; Wu-Jun Liu; Hong Jiang; Jie-Jie Chen; Wen-Wei Li; Han-Qing Yu

In this work, bio-char, a mass productive by-product of biomass fast pyrolysis, was adopted as an adsorbent to remove tetracycline (TC) from aqueous solution. To enhance the adsorption capacity, a simple modification of bio-char with acid and alkali was carried out. Bio-char samples were characterized by Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption isotherm. The results show that the alkali treated bio-char possesses larger surface area than those of raw and acid treated bio-chars, and accordingly exhibits a more excellent adsorption performance (58.8 mg/g) than the other two bio-chars and other adsorbents reported previously. The graphite-like structure of bio-char facilitates the formation of π-π interactions between ring structure in tetracycline molecule and graphite-like sheets. The surface area showed significant effects on TC adsorption as well as O-containing functional groups, whereas the initial pH of solution has small effects on TC adsorption under the experimental conditions.


Water Research | 2012

Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell.

Juan Xu; Guo-Ping Sheng; Hong-Wei Luo; Wen-Wei Li; Long-Fei Wang; Han-Qing Yu

The fouling characteristics of proton exchange membrane (PEM) in microbial fuel cell (MFC) and the resulting deterioration of MFC performance were explored in this study. It was observed that the ion exchange capacity, conductivity and diffusion coefficients of cations of PEM were reduced significantly after fouling. Imaging analysis coupled with FTIR analysis indicated that the fouling layer attached on PEM consisted of microorganisms encased in extracellular polymers and inorganic salt precipitations. The results clearly demonstrate that PEM fouling deteriorated the performance of MFCs and led to a decrease in electricity generation. Cation transfer limitation might play an important role in the deterioration of MFC performance because of the membrane fouling. This was attributed to the physical blockage of charge transfer in the MFC resulted from the membrane fouling. With the experimental results, the effect of membrane fouling on the electrical generation of MFCs was evaluated. It was found that the decreased diffusion coefficients of cations and cathodic potential loss after membrane fouling contributed mainly to the deterioration of the MFC performance.


Water Research | 2013

Thermodynamic analysis on the binding of heavy metals onto extracellular polymeric substances (EPS) of activated sludge

Guo-Ping Sheng; Juan Xu; Hong-Wei Luo; Wen-Wei Li; Wei-Hua Li; Han-Qing Yu; Zhi Xie; Shiqiang Wei; Fengchun Hu

Metal binding to microbial extracellular polymeric substances (EPS) greatly influences the distribution of heavy metals in microbial aggregates, soil and aquatic systems in nature. In this work, the thermodynamic characteristics of the binding between aqueous metals (with copper ion as an example) and EPS of activated sludge were investigated. Isothermal titration calorimetry was employed to estimate the thermodynamic parameters for the binding of Cu²⁺ onto EPS, while three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy with parallel factor analysis was used for quantifying the complexation of Cu²⁺ with the EPS. The binding mechanisms were further explored by X-ray absorption fine structure (XAFS) and Fourier transform infrared (FTIR) spectroscopy analysis. The results show that the proteins and humic substances in EPS were both strong ligands for Cu²⁺. The binding capacity N, binding constant K, binding enthalpy ΔH were calculated as 5.74 × 10⁻² mmol/g, 2.18 × 10⁵ L/mol, and -11.30 kJ/mol, respectively, implying that such a binding process was exothermic and thermodynamically favorable. The binding process was found to be driven mainly by the entropy change of the reaction. A further investigation shows that Cu²⁺ bound with the oxygen atom in the carboxyl groups in the EPS molecules of activated sludge. This study facilitates a better understanding about the roles of EPS in protecting microbes against heavy metals.


Environmental Science & Technology | 2011

Development of a Novel Bioelectrochemical Membrane Reactor for Wastewater Treatment

Yun-Kun Wang; Guo-Ping Sheng; Wen-Wei Li; Yu-Xi Huang; Yang-Yang Yu; Raymond J. Zeng; Han-Qing Yu

A novel bioelectrochemical membrane reactor (BEMR), which takes advantage of a membrane bioreactor (MBR) and microbial fuel cells (MFC), is developed for wastewater treatment and energy recovery. In this system, stainless steel mesh with biofilm formed on it serves as both the cathode and the filtration material. Oxygen reduction reactions are effectively catalyzed by the microorganisms attached on the mesh. The effluent turbidity from the BEMR system was low during most of the operation period, and the chemical oxygen demand and NH(4)(+)-N removal efficiencies averaged 92.4% and 95.6%, respectively. With an increase in hydraulic retention time and a decrease in loading rate, the system performance was enhanced. In this BEMR process, a maximum power density of 4.35 W/m(3) and a current density of 18.32 A/m(3) were obtained at a hydraulic retention time of 150 min and external resister of 100 Ω. The Coulombic efficiency was 8.2%. Though the power density and current density of the BEMR system were not very high, compared with other high-output MFC systems, electricity recovery could be further enhanced through optimizing the operation conditions and BEMR configurations. Results clearly indicate that this innovative system holds great promise for efficient treatment of wastewater and energy recovery.


Bioresource Technology | 2014

Insight into the roles of microbial extracellular polymer substances in metal biosorption.

Wen-Wei Li; Han-Qing Yu

Biosorption presents a potent technology to remediate metal-contaminated aqueous environment or even to recover precious metals. Extracellular polymeric substances (EPS) are believed to play an important role in metal biosorption by microorganisms, but the reported results have been rather contradictory and the underlying mechanisms remain largely unclear so far. This review aims to clarify why large discrepancies existed for different EPS-metal systems through systematically exploring into the adsorption mechanisms and influential factors, and to offer some implications for advancing the implementation of metal biosorption technologies. The state-of-the-art methodologies for characterizing metal-EPS binding are summarized; several interaction mechanisms, including ion exchange, complexation and surface precipitation, are analyzed; the major influential factors such as EPS composition, metal species, solution chemistry and operating conditions are discussed; and lastly future research needs to advance the investigations and implementations of such biosorption processes are proposed.


ACS Applied Materials & Interfaces | 2014

Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing {001} facets.

Xing Zhang; Xin-Bo Wang; Li-Wei Wang; Wei-Kang Wang; Lu−Lu Long; Wen-Wei Li; Han-Qing Yu

BiOCl is known as a highly efficient photocatalyst for degradation of pollutants. However, effective methods for fabricating BiOCl nanomaterials with well-defined facets are still lacking. In this work, a facile synthetic method was developed for the fabrication of BiOCl nanodisks with exposed {001} facets. The central feature of this approach was the use of water as the hydrolysis agent and ethylene glycol as the crystal growth inhibitor agent to tune the growth of BiOCl nanomaterial. With this approach, the size and shape of BiOCl nanostructures could be effectively tuned through adjusting the volume ratio of ethylene glycol/H2O. In addition, the mechanism of the crystal growth in this fabrication process was elucidated. The as-prepared BiOCl nanodisks with exposed {001} facets exhibited an excellent photocatalytic activity towards Rhodamine B degradation under both ultraviolet and visible light irradiations. These findings shed light on the deep understanding of formation mechanisms of BiOCl nanodisks and provide an efficient and facile method for the synthesis of high active photocatalyst.


Environmental Science & Technology | 2012

pH Dependence of Structure and Surface Properties of Microbial EPS

Ling-Ling Wang; Long-Fei Wang; Xue-Mei Ren; Xiaodong Ye; Wen-Wei Li; Shi-Jie Yuan; Min Sun; Guo-Ping Sheng; Han-Qing Yu; Xiang-Ke Wang

The flocculation of microorganisms plays a crucial role in bioreactors, and is substantially affected by pH. However, the mechanism for such an effect remains unclear. In this work, with an integrated approach, the pH dependence of structure and surface property of microbial extracellular polymeric substances (EPS), excreted from Bacillus megaterium TF10, and accordingly its flocculation is elucidated. From the Fourier transform infrared spectra and acid-base titration test results, the main functional groups and buffering zones in the EPS responsible for the microbial flocculation are indentified. The laser light scattering analysis reveals that the deprotonated or protonated states of these functional groups in EPS result in more dense and compact structure at a lower pH because of hydrophobicity and intermolecular hydrogen bonds. The zeta potential measurements identify the isoelectric point and indicate that the electrostatic repulsion action of EPS is controlled by pH. The highest flocculation efficiency is achieved near the isoelectric point (pH 4.8). These results clearly demonstrate that the EPS structure, surface properties, and accordingly the microbial flocculation are dependent heavily on pH in solution.


Environmental Science & Technology | 2011

Identification of Key Constituents and Structure of the Extracellular Polymeric Substances Excreted by Bacillus megaterium TF10 for Their Flocculation Capacity

Shi-Jie Yuan; Min Sun; Guo-Ping Sheng; Yin Li; Wen-Wei Li; Ri-Sheng Yao; Han-Qing Yu

Extracellular polymeric substances (EPS), a complex high-molecular-weight mixture of polymers excreted by microorganisms and produced from cell lysis, may have a high bioflocculation activity. In this work, the EPS excreted from Bacillus megaterium TF10, which was isolated from a soil sample, were systematically characterized to give insights into the relationship between their specific constituents and structure with their flocculation capacity. The results of microscopic observation, zeta potential, and TF10 EPS structure analysis show that the bridging mechanism was mainly responsible for the flocculation of the TF10. The constituents with a large molecular weight (1037-2521 kDA) and functional groups had contributed to the flocculation. GC-MS and NMR analyses demonstrate that the polysaccharides had long chain composed of rhamnose as well as glucose and galactose with uronic acids, acetyl amino sugars, and proteins as the side chains. The proteins in TF10 had no flocculation ability because of their special secondary structure and molecular weight diffusion characters. The EPS from Bacillus megaterium TF10 were found to exhibit a high flocculation activity, and the polysaccharides in EPS, which have the structure of the long backbone with active side chains, were identified as the active constituents for the high flocculation activity.

Collaboration


Dive into the Wen-Wei Li's collaboration.

Top Co-Authors

Avatar

Han-Qing Yu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Guo-Ping Sheng

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Jie-Jie Chen

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhong-Hua Tong

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Xian-Wei Liu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Yuan-Yuan Cheng

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Feng Zhang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raymond J. Zeng

University of Science and Technology of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge