Jie Nan
Peking University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jie Nan.
Nucleic Acids Research | 2007
Ming-Rui Duan; Jie Nan; Yu-He Liang; Peng Mao; Lu Lu; Lan-Fen Li; Chunhong Wei; Luhua Lai; Yi Li; Xiao-Dong Su
WRKY proteins, defined by the conserved WRKYGQK sequence, are comprised of a large superfamily of transcription factors identified specifically from the plant kingdom. This superfamily plays important roles in plant disease resistance, abiotic stress, senescence as well as in some developmental processes. In this study, the Arabidopsis WRKY1 was shown to be involved in the salicylic acid signaling pathway and partially dependent on NPR1; a C-terminal domain of WRKY1, AtWRKY1-C, was constructed for structural studies. Previous investigations showed that DNA binding of the WRKY proteins was localized at the WRKY domains and these domains may define novel zinc-binding motifs. The crystal structure of the AtWRKY1-C determined at 1.6 Å resolution has revealed that this domain is composed of a globular structure with five β strands, forming an antiparallel β-sheet. A novel zinc-binding site is situated at one end of the β-sheet, between strands β4 and β5. Based on this high-resolution crystal structure and site-directed mutagenesis, we have defined and confirmed that the DNA-binding residues of AtWRKY1-C are located at β2 and β3 strands. These results provided us with structural information to understand the mechanism of transcriptional control and signal transduction events of the WRKY proteins.
Journal of Molecular Biology | 2008
Yan-Feng Zhou; Beiyan Nan; Jie Nan; Qingjun Ma; Santosh Panjikar; Yu-He Liang; Yi-Ping Wang; Xiao-Dong Su
C(4)-dicarboxylates are the major carbon and energy sources during the symbiotic growth of rhizobia. Responses to C(4)-dicarboxylates depend on typical two-component systems (TCS) consisting of a transmembrane sensor histidine kinase and a cytoplasmic response regulator. The DctB-DctD system is the first identified TCS for C(4)-dicarboxylates sensing. Direct ligand binding to the sensor domain of DctB is believed to be the first step of the sensing events. In this report, the water-soluble periplasmic sensor domain of Sinorhizobium meliloti DctB (DctBp) was studied, and three crystal structures were solved: the apo protein, a complex with C(4) succinate, and a complex with C(3) malonate. Different from the two structurally known CitA family of carboxylate sensor proteins CitA and DcuS, the structure of DctBp consists of two tandem Per-Arnt-Sim (PAS) domains and one N-terminal helical region. Only the membrane-distal PAS domain was found to bind the ligands, whereas the proximal PAS domain was empty. Comparison of DctB, CitA, and DcuS suggests a detailed stereochemistry of C(4)-dicarboxylates ligand perception. The structures of the different ligand binding states of DctBp also revealed a series of conformational changes initiated upon ligand binding and propagated to the N-terminal domain responsible for dimerization, providing insights into understanding the detailed mechanism of the signal transduction of TCS histidine kinases.
Acta Crystallographica Section D-biological Crystallography | 2006
Xiao-Dong Su; Yu-He Liang; Lan-Fen Li; Jie Nan; Erik Brostromer; Peng Liu; Yuhui Dong; Dingchang Xian
A large-scale, high-efficiency and low-cost platform based on a Beckman Coulter Biomek FX and custom-made automation systems for structural genomics has been set up at Peking University, Beijing, Peoples Republic of China. This platform has the capacity to process up to 2000 genes per year for structural and functional analyses. Bacillus subtilis, a model organism for Gram-positive bacteria, and Streptococcus mutans, a major pathogen of dental caries, were selected as the main targets. To date, more than 470 B. subtilis and 1200 S. mutans proteins and hundreds of proteins from other sources, including human liver proteins, have been selected as targets for this platform. The selected genes are mainly related to important metabolism pathways and/or have potential relevance for drug design. To date, 40 independent structures have been determined; of these 11 are in the category of novel structures by the criterion of having less than 30% sequence identity to known structures. More than 13 structures were determined by SAD/MAD phasing. The macromolecular crystallography beamline at the Beijing Synchrotron Radiation Facility and modern phasing programs have been crucial components of the operation of the platform. The idea and practice of the genomic approach have been successfully adopted in a moderately funded structural biology program and it is believed this adaptation will greatly improve the production of protein structures. The goal is to be able to solve a protein structure of moderate difficulty at a cost about US 10,000 dollars.
PLOS ONE | 2012
Meiqin Chen; Ai-Hong Zhang; Quan Zhang; Bao-Cai Zhang; Jie Nan; Xia Li; Na Liu; Hong Qu; Cong-Ming Lu; Sudmorgen; Yihua Zhou; Zhi-Hong Xu; Shu-Nong Bai
NMD3 is required for nuclear export of the 60S ribosomal subunit in yeast and vertebrate cells, but no corresponding function of NMD3 has been reported in plants. Here we report that Arabidopsis thaliana NMD3 (AtNMD3) showed a similar function in the nuclear export of the 60S ribosomal subunit. Interference with AtNMD3 function by overexpressing a truncated dominant negative form of the protein lacking the nuclear export signal sequence caused retainment of the 60S ribosomal subunits in the nuclei. More interestingly, the transgenic Arabidopsis with dominant negative interference of AtNMD3 function showed a striking failure of secondary cell wall thickening, consistent with the altered expression of related genes and composition of cell wall components. Observation of a significant decrease of rough endoplasmic reticulum (RER) in the differentiating interfascicular fiber cells of the transgenic plant stems suggested a link between the defective nuclear export of 60S ribosomal subunits and the abnormal formation of the secondary cell wall. These findings not only clarified the evolutionary conservation of NMD3 functions in the nuclear export of 60S ribosomal subunits in yeast, animals and plants, but also revealed a new facet of the regulatory mechanism underlying secondary cell wall thickening in Arabidopsis. This new facet is that the nuclear export of 60S ribosomal subunits and the formation of RER may play regulatory roles in coordinating protein synthesis in cytoplasm and transcription in nuclei.
Nucleic Acids Research | 2012
Kai-Tuo Wang; Benoit Desmolaize; Jie Nan; Xiao-Wei Zhang; Lan-Fen Li; Stephen Douthwaite; Xiao-Dong Su
The 23S rRNA nucleotide m2G2445 is highly conserved in bacteria, and in Escherichia coli this modification is added by the enzyme YcbY. With lengths of around 700 amino acids, YcbY orthologs are the largest rRNA methyltransferases identified in Gram-negative bacteria, and they appear to be fusions from two separate proteins found in Gram-positives. The crystal structures described here show that both the N- and C-terminal halves of E. coli YcbY have a methyltransferase active site and their folding patterns respectively resemble the Streptococcus mutans proteins Smu472 and Smu776. Mass spectrometric analyses of 23S rRNAs showed that the N-terminal region of YcbY and Smu472 are functionally equivalent and add the m2G2445 modification, while the C-terminal region of YcbY is responsible for the m7G2069 methylation on the opposite side of the same helix (H74). Smu776 does not target G2069, and this nucleotide remains unmodified in Gram-positive rRNAs. The E.coli YcbY enzyme is the first example of a methyltransferase catalyzing two mechanistically different types of RNA modification, and has been renamed as the Ribosomal large subunit methyltransferase, RlmKL. Our structural and functional data provide insights into how this bifunctional enzyme evolved.
Acta Crystallographica Section D-biological Crystallography | 2009
Jie Nan; Yan-Feng Zhou; Cheng Yang; Erik Brostromer; Ole Kristensen; Xiao-Dong Su
Sulfur single-wavelength anomalous dispersion (S-SAD) and halide-soaking methods are increasingly being used for ab initio phasing. With the introduction of in-house Cr X-ray sources, these methods benefit from the enhanced anomalous scattering of S and halide atoms, respectively. Here, these methods were combined to determine the crystal structure of BsDegV, a DegV protein-family member from Bacillus subtilis. The protein was cocrystallized with bromide and low-redundancy data were collected to 2.5 A resolution using Cr Kalpha radiation. 17 heavy-atom sites (ten sulfurs and seven bromides) were located using standard methods. The anomalous scattering of some of the BsDegV S atoms and Br atoms was weak, thus neither sulfurs nor bromides could be used alone for structure determination using the collected data. When all 17 heavy-atom sites were used for SAD phasing, an easily interpretable electron-density map was obtained after density modification. The model of BsDegV was built automatically and a palmitate was found tightly bound in the active site. Sequence alignment and comparisons with other known DegV structures provided further insight into the specificity of fatty-acid selection and recognition within this protein family.
Acta Crystallographica Section D-biological Crystallography | 2007
Erik Brostromer; Jie Nan; Xiao-Dong Su
As part of a structural genomics platform in a university laboratory, a low-cost in-house-developed automated imaging system for SBS microplate experiments has been designed and constructed. The imaging system can scan a microplate in 2-6 min for a 96-well plate depending on the plate layout and scanning options. A web-based crystallization database system has been developed, enabling users to follow their crystallization experiments from a web browser. As the system has been designed and built by students and crystallographers using commercially available parts, this report is aimed to serve as a do-it-yourself example for laboratory robotics.
Acta Crystallographica Section D-biological Crystallography | 2012
Dan Li; Tian Min Fu; Jie Nan; Cong Liu; Lan Fen Li; Xiao-Dong Su
p90 ribosomal S6 kinases (RSKs) respond to various mitogen stimuli and comprise two distinct protein kinase domains. The C-terminal kinase domain (CTKD) receives signal from ERK1/2 and adopts an autoinhibitory mechanism. Here, the crystal structure of human RSK1 CTKD is reported at 2.7 Å resolution. The structure shows a standard kinase fold, with the catalytic residues in the ATP-binding cleft orientated in optimal conformations for phosphotransfer. The inactivation of the CTKD is conferred by an extra α-helix (αL), which occupies the substrate-binding groove. In combination with previous knowledge, this structure indicates that activation of RSK1 involves the removal of αL from the substrate-binding groove induced by ERK1/2 phosphorylation.
FEBS Letters | 2010
Lu Lu; Jie Nan; Wei Mi; Lan-Fen Li; Chun-Hong Wei; Xiao-Dong Su; Yi Li
MINT‐7968928: KIS (uniprotkb:O04350) and Tub9 (uniprotkb:P29517) physically interact (MI:0915) by bimolecular fluorescence complementation (MI:0809)
Journal of Structural and Functional Genomics | 2014
Lan-Fen Li; Jie Nan; Dan Li; Erik Brostromer; Cong Liu; Qiao-Ming Hou; Xuexin Fan; Zhao-Yang Ye; Xiao-Dong Su
Gram-positive bacterium Streptococcus mutans is the primary causative agent of human dental caries. To better understand this pathogen at the atomic structure level and to establish potential drug and vaccine targets, we have carried out structural genomics research since 2005. To achieve the goal, we have developed various in-house automation systems including novel high-throughput crystallization equipment and methods, based on which a large-scale, high-efficiency and low-cost platform has been establish in our laboratory. From a total of 1,963 annotated open reading frames, 1,391 non-membrane targets were selected prioritized by protein sequence similarities to unknown structures, and clustered by restriction sites to allow for cost-effective high-throughput conventional cloning. Selected proteins were over-expressed in different strains of Escherichia coli. Clones expressed soluble proteins were selected, expanded, and expressed proteins were purified and subjected to crystallization trials. Finally, protein crystals were subjected to X-ray analysis and structures were determined by crystallographic methods. Using the previously established procedures, we have so far obtained more than 200 kinds of protein crystals and 100 kinds of crystal structures involved in different biological pathways. In this paper we demonstrate and review a possibility of performing structural genomics studies at moderate laboratory scale. Furthermore, the techniques and methods developed in our study can be widely applied to conventional structural biology research practice.