Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiao-Dong Su is active.

Publication


Featured researches published by Xiao-Dong Su.


Science | 2013

Probing Allostery through DNA

Sangjin Kim; Erik Brostromer; Dong Xing; Jianshi Jin; Shasha Chong; Hao Ge; Siyuan Wang; Chan Gu; Lijiang Yang; Yi Qin Gao; Xiao-Dong Su; Yujie Sun; X. Sunney Xie

Allostery Across DNA Proteins, such as transcription factors and RNA polymerase, bind close to each other on DNA and their function is coordinated. Kim et al. (p. 816; see the Perspective by Crothers) report single-molecule experiments that show that the DNA binding affinity of a protein is significantly altered by a second protein bound nearby. The effect oscillates between stabilizing and destabilizing the binding with a periodicity equal to the helical pitch of DNA. Allosteric coupling between a transcriptional repressor and RNA polymerase modulated gene expression in living bacteria. Proteins bound to the same, but not overlapping, stretch of DNA modulate each others DNA binding affinity. [Also see Perspective by Crothers] Allostery is well documented for proteins but less recognized for DNA-protein interactions. Here, we report that specific binding of a protein on DNA is substantially stabilized or destabilized by another protein bound nearby. The ternary complexs free energy oscillates as a function of the separation between the two proteins with a periodicity of ~10 base pairs, the helical pitch of B-form DNA, and a decay length of ~15 base pairs. The binding affinity of a protein near a DNA hairpin is similarly dependent on their separation, which—together with molecular dynamics simulations—suggests that deformation of the double-helical structure is the origin of DNA allostery. The physiological relevance of this phenomenon is illustrated by its effect on gene expression in live bacteria and on a transcription factors affinity near nucleosomes.


Nature Structural & Molecular Biology | 2012

The structural basis for the sensing and binding of cyclic di-GMP by STING

Yi-He Huang; Xiang-Yu Liu; Xiao-Xia Du; Zhengfan Jiang; Xiao-Dong Su

STING (stimulator of interferon genes) is an essential signaling adaptor that mediates cytokine production in response to microbial invasion by directly sensing bacterial secondary messengers such as the cyclic dinucleotide bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP). STINGs structure and its binding mechanism to cyclic dinucleotides were unknown. We report here the crystal structures of the STING cytoplasmic domain and its complex with c-di-GMP, thus providing the structural basis for understanding STING function.


Nucleic Acids Research | 2007

DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein

Ming-Rui Duan; Jie Nan; Yu-He Liang; Peng Mao; Lu Lu; Lan-Fen Li; Chunhong Wei; Luhua Lai; Yi Li; Xiao-Dong Su

WRKY proteins, defined by the conserved WRKYGQK sequence, are comprised of a large superfamily of transcription factors identified specifically from the plant kingdom. This superfamily plays important roles in plant disease resistance, abiotic stress, senescence as well as in some developmental processes. In this study, the Arabidopsis WRKY1 was shown to be involved in the salicylic acid signaling pathway and partially dependent on NPR1; a C-terminal domain of WRKY1, AtWRKY1-C, was constructed for structural studies. Previous investigations showed that DNA binding of the WRKY proteins was localized at the WRKY domains and these domains may define novel zinc-binding motifs. The crystal structure of the AtWRKY1-C determined at 1.6 Å resolution has revealed that this domain is composed of a globular structure with five β strands, forming an antiparallel β-sheet. A novel zinc-binding site is situated at one end of the β-sheet, between strands β4 and β5. Based on this high-resolution crystal structure and site-directed mutagenesis, we have defined and confirmed that the DNA-binding residues of AtWRKY1-C are located at β2 and β3 strands. These results provided us with structural information to understand the mechanism of transcriptional control and signal transduction events of the WRKY proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Bacillus subtilis arsenate reductase is structurally and functionally similar to low molecular weight protein tyrosine phosphatases

Matthew S. Bennett; Zhi Guan; Martin Laurberg; Xiao-Dong Su

Arsenate is an abundant oxyanion that, because of its ability to mimic the phosphate group, is toxic to cells. Arsenate reductase (EC 1.97.1.5; encoded by the arsC gene in bacteria) participates to achieve arsenate resistance in both prokaryotes and yeast by reducing arsenate to arsenite; the arsenite is then exported by a specific transporter. The crystal structure of Bacillus subtilis arsenate reductase in the reduced form with a bound sulfate ion in its active site is solved at 1.6-Å resolution. Significant structural similarity is seen between arsenate reductase and bovine low molecular weight protein tyrosine phosphatase, despite very low sequence identity. The similarity is especially high between their active sites. It is further confirmed that this structural homology is relevant functionally by showing the phosphatase activity of the arsenate reductase in vitro. Thus, we can understand the arsenate reduction in the light of low molecular weight protein tyrosine phosphatase mechanism and also explain the catalytic roles of essential residues such as Cys-10, Cys-82, Cys-89, Arg-16, and Asp-105. A “triple cysteine redox relay” is proposed for the arsenate reduction mechanism.


EMBO Reports | 2010

Crystal structures of human caspase 6 reveal a new mechanism for intramolecular cleavage self‐activation

Xiao-Jun Wang; Qin Cao; Xiang Liu; Kai-Tuo Wang; Wei Mi; Yan Zhang; Lan-Fen Li; Andréa C. LeBlanc; Xiao-Dong Su

Dimeric effectors caspase 3 and caspase 7 are activated by initiator caspase processing. In this study, we report the crystal structures of effector caspase 6 (CASP6) zymogen and N‐Acetyl‐Val‐Glu‐Ile‐Asp‐al‐inhibited CASP6. Both of these forms of CASP6 have a dimeric structure, and in CASP6 zymogen the intersubunit cleavage site 190TEVD193 is well structured and inserts into the active site. This positions residue Asp 193 to be easily attacked by the catalytic residue Cys 163. We demonstrate biochemically that intramolecular cleavage at Asp 193 is a prerequisite for CASP6 self‐activation and that this activation mechanism is dependent on the length of the L2 loop. Our results indicate that CASP6 can be activated and regulated through intramolecular self‐cleavage.


Journal of Molecular Biology | 2008

C4-dicarboxylates sensing mechanism revealed by the crystal structures of DctB sensor domain.

Yan-Feng Zhou; Beiyan Nan; Jie Nan; Qingjun Ma; Santosh Panjikar; Yu-He Liang; Yi-Ping Wang; Xiao-Dong Su

C(4)-dicarboxylates are the major carbon and energy sources during the symbiotic growth of rhizobia. Responses to C(4)-dicarboxylates depend on typical two-component systems (TCS) consisting of a transmembrane sensor histidine kinase and a cytoplasmic response regulator. The DctB-DctD system is the first identified TCS for C(4)-dicarboxylates sensing. Direct ligand binding to the sensor domain of DctB is believed to be the first step of the sensing events. In this report, the water-soluble periplasmic sensor domain of Sinorhizobium meliloti DctB (DctBp) was studied, and three crystal structures were solved: the apo protein, a complex with C(4) succinate, and a complex with C(3) malonate. Different from the two structurally known CitA family of carboxylate sensor proteins CitA and DcuS, the structure of DctBp consists of two tandem Per-Arnt-Sim (PAS) domains and one N-terminal helical region. Only the membrane-distal PAS domain was found to bind the ligands, whereas the proximal PAS domain was empty. Comparison of DctB, CitA, and DcuS suggests a detailed stereochemistry of C(4)-dicarboxylates ligand perception. The structures of the different ligand binding states of DctBp also revealed a series of conformational changes initiated upon ligand binding and propagated to the N-terminal domain responsible for dimerization, providing insights into understanding the detailed mechanism of the signal transduction of TCS histidine kinases.


Journal of Molecular Biology | 2009

CLIC2-RyR1 Interaction and Structural Characterization by Cryo-electron Microscopy

Xing Meng; Guoliang Wang; Cedric Viero; Qiongling Wang; Wei Mi; Xiao-Dong Su; Terence Wagenknecht; Alan J. Williams; Zheng Liu; Chang-Cheng Yin

Chloride intracellular channel 2 (CLIC2), a newly discovered small protein distantly related to the glutathione transferase (GST) structural family, is highly expressed in cardiac and skeletal muscle, although its physiological function in these tissues has not been established. In the present study, [3H]ryanodine binding, Ca2+ efflux from skeletal sarcoplasmic reticulum (SR) vesicles, single channel recording, and cryo-electron microscopy were employed to investigate whether CLIC2 can interact with skeletal ryanodine receptor (RyR1) and modulate its channel activity. We found that: (1) CLIC2 facilitated [3H]ryanodine binding to skeletal SR and purified RyR1, by increasing the binding affinity of ryanodine for its receptor without significantly changing the apparent maximal binding capacity; (2) CLIC2 reduced the maximal Ca2+ efflux rate from skeletal SR vesicles; (3) CLIC2 decreased the open probability of RyR1 channel, through increasing the mean closed time of the channel; (4) CLIC2 bound to a region between domains 5 and 6 in the clamp-shaped region of RyR1; (5) and in the same clamp region, domains 9 and 10 became separated after CLIC2 binding, indicating CLIC2 induced a conformational change of RyR1. These data suggest that CLIC2 can interact with RyR1 and modulate its channel activity. We propose that CLIC2 functions as an intrinsic stabilizer of the closed state of RyR channels.


Journal of Biological Chemistry | 2013

Structure of the type VI effector-immunity complex (Tae4-Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity protein

Heng Zhang; Zengqiang Gao; Wen-Jia Wang; Guangfeng Liu; Jian-Hua Xu; Xiao-Dong Su; Yuhui Dong

Background: The bacteria effector Tae4 is injected into the recipient cells to kill them and the immunity protein Tai4 is produced to inactivate Tae4. Results: Tae4 displays a papain-like fold, and Tai4 dimer is responsible for inhibiting Tae4 activity. Conclusion: The inactivation of Tae4 is required by collaboration of both subunits of Tai4 dimer. Significance: Our results add new insights into the effector-immunity interaction module. The type VI secretion system (T6SS), a multisubunit needle-like apparatus, has recently been found to play a role in interspecies interactions. The Gram-negative bacteria harboring T6SS (donor) deliver the effectors into their neighboring cells (recipient) to kill them. Meanwhile, the cognate immunity proteins were employed to protect the donor cells against the toxic effectors. Tae4 (type VI amidase effector 4) and Tai4 (type VI amidase immunity 4) are newly identified T6SS effector-immunity pairs. Here, we report the crystal structures of Tae4 from Enterobacter cloacae and Tae4-Tai4 complexes from both E. cloacae and Salmonella typhimurium. Tae4 acts as a dl-endopeptidase and displays a typical N1pC/P60 domain. Unlike Tsi1 (type VI secretion immunity 1), Tai4 is an all-helical protein and forms a dimer in solution. The small angle x-ray scattering study combined with the analytical ultracentrifugation reveal that the Tae4-Tai4 complex is a compact heterotetramer that consists of a Tai4 dimer and two Tae4 molecules in solution. Structure-based mutational analysis of the Tae4-Tai4 interface shows that a helix (α3) of one subunit in dimeric Tai4 plays a major role in binding of Tae4, whereas a protruding loop (L4) in the other subunit is mainly responsible for inhibiting Tae4 activity. The inhibition process requires collaboration between the Tai4 dimer. These results reveal a novel and unique inhibition mechanism in effector-immunity pairs and suggest a new strategy to develop antipathogen drugs.The type VI secretion system (T6SS), a multisubunit needle-like apparatus, has recently been found to play a role in interspecies interactions. The gram-negative bacteria harboring T6SS (donor) deliver the effectors into their neighboring cells (recipient) to kill them. Meanwhile, the cognate immunity proteins were employed to protect the donor cells against the toxic effectors. Tae4 (type VI amidase effector 4) and Tai4 (type VI amidase immunity 4) are newly identified T6SS effector-immunity pairs. Here, we report the crystal structures of Tae4 from Enterobacter cloacae and Tae4-Tai4 complexes from both E. cloacae and Salmonella typhimurium. Tae4 acts as a DL-endopeptidase and displays a typical N1pC/P60 domain. Unlike Tsi1 (type VI secretion immunity 1), Tai4 is an all-helical protein and forms a dimer in solution. The small angle x-ray scattering study combined with the analytical ultracentrifugation reveal that the Tae4-Tai4 complex is a compact heterotetramer that consists of a Tai4 dimer and two Tae4 molecules in solution. Structure-based mutational analysis of the Tae4-Tai4 interface shows that a helix (α3) of one subunit in dimeric Tai4 plays a major role in binding of Tae4, whereas a protruding loop (L4) in the other subunit is mainly responsible for inhibiting Tae4 activity. The inhibition process requires collaboration between the Tai4 dimer. These results reveal a novel and unique inhibition mechanism in effector-immunity pairs and suggest a new strategy to develop antipathogen drugs.


Cell Research | 2013

Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA.

Yaling Wu; Lan-Fen Li; Xiao-Dong Su

CLOCK (circadian locomotor output cycles kaput) and BMAL1 (brain and muscle ARNT-like 1) are both transcription factors of the circadian core loop in mammals. Recently published mouse CLOCK-BMAL1 bHLH (basic helix-loop-helix)-PAS (period-ARNT-single-minded) complex structure sheds light on the mechanism for heterodimer formation, but the structural details of the protein-DNA recognition mechanisms remain elusive. Here we have elucidated the crystal structure of human CLOCK-BMAL1 bHLH domains bound to a canonical E-box DNA. We demonstrate that CLOCK and BMAL1 bHLH domains can be mutually selected, and that hydrogen-bonding networks mediate their E-box recognition. We identified a hydrophobic contact between BMAL1 Ile80 and a flanking thymine nucleotide, suggesting that CLOCK-BMAL1 actually reads 7-bp DNA and not the previously believed 6-bp DNA. To find potential non-canonical E-boxes that could be recognized by CLOCK-BMAL1, we constructed systematic single-nucleotide mutations on the E-box and measured their relevant affinities. We defined two non-canonical E-box patterns with high affinities, AACGTGA and CATGTGA, in which the flanking A7-T7′ base pair is indispensable for recognition. These results will help us to identify functional CLOCK-BMAL1-binding sites in vivo and to search for clock-controlled genes. Furthermore, we assessed the inhibitory role of potential phosphorylation sites in bHLH regions. We found that the phospho-mimicking mutation on BMAL1 Ser78 could efficiently block DNA binding as well as abolish normal circadian oscillation in cells. We propose that BMAL1 Ser78 should be a key residue mediating input signal-regulated transcriptional inhibition for external cues to entrain the circadian clock by kinase cascade.


Acta Crystallographica Section D-biological Crystallography | 2002

Parallel cloning, expression, purification and crystallization of human proteins for structural genomics

Haitao Ding; Hui Ren; Qiang Chen; Gang Fang; Lan-Fen Li; Rui Li; Zhuo Wang; Xiao-yu Jia; Yu-He Liang; Meihao Hu; Yi Li; Jingchu Luo; Xiaocheng Gu; Xiao-Dong Su; Ming Luo; Shanyun Lu

54 human genes were selected as test targets for parallel cloning, expression, purification and crystallization. Proteins from these genes were selected to have a molecular weight of between 14 and 50 kDa, not to have a high percentage of hydrophobic residues (i.e. more likely to be soluble) and to have no known crystal structures and were not known to be subunits of heterocomplexes. Four proteins containing transmembrane regions were selected for comparative tests. To date, 44 expression clones have been constructed with the Gateway cloning system (Invitrogen, The Netherlands). Of these, 35 clones were expressed as recombinant proteins in Escherichia coli strain BL21 (DE3)-pLysS, of which 12 were soluble and four have been purified to homogeneity. Crystallization conditions were screened for the purified proteins in 96-well plates under oil. After further refinement with the same device or by the hanging-drop method, crystals were grown, with needle, plate and prism shapes. A 2.12 A data set was collected for protein NCC27. The results provide insights into the high-throughput target selection, cloning, expression and crystallization of human genomic proteins.

Collaboration


Dive into the Xiao-Dong Su's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuhui Dong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heng Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zengqiang Gao

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge