Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiefu Zheng is active.

Publication


Featured researches published by Jiefu Zheng.


Nature Neuroscience | 2011

A differentially amplified motion in the ear for near-threshold sound detection

Fangyi Chen; Dingjun Zha; Anders Fridberger; Jiefu Zheng; Niloy Choudhury; Steven L. Jacques; Ruikang K. Wang; Xiaorui Shi; Alfred L. Nuttall

The ear is a remarkably sensitive pressure fluctuation detector. In guinea pigs, behavioral measurements indicate a minimum detectable sound pressure of ∼20 μPa at 16 kHz. Such faint sounds produce 0.1-nm basilar membrane displacements, a distance smaller than conformational transitions in ion channels. It seems that noise within the auditory system would swamp such tiny motions, making weak sounds imperceptible. Here we propose a new mechanism contributing to a resolution of this problem and validate it through direct measurement. We hypothesized that vibration at the apical side of hair cells is enhanced compared with that at the commonly measured basilar membrane side. Using in vivo optical coherence tomography, we demonstrated that apical-side vibrations peaked at a higher frequency, had different timing and were enhanced compared with those at the basilar membrane. These effects depend nonlinearly on the stimulus sound pressure level. The timing difference and enhancement of vibrations are important for explaining how the noise problem is circumvented.


The Journal of Neuroscience | 2006

Control of Mammalian Cochlear Amplification by Chloride Anions

Joseph Santos-Sacchi; Lei Song; Jiefu Zheng; Alfred L. Nuttall

Chloride ions have been hypothesized to interact with the membrane outer hair cell (OHC) motor protein, prestin on its intracellular domain to confer voltage sensitivity (Oliver et al., 2001). Thus, we hypothesized previously that transmembrane chloride movements via the lateral membrane conductance of the cell, GmetL, could serve to underlie cochlear amplification in the mammal. Here, we report on experimental manipulations of chloride-dependent OHC motor activity in vitro and in vivo. In vitro, we focused on the signature electrical characteristic of the motor, the nonlinear capacitance of the cell. Using the well known ototoxicant, salicylate, which competes with the putative anion binding or interaction site of prestin to assess level-dependent interactions of chloride with prestin, we determined that the resting level of chloride in OHCs is near or below 10 mm, whereas perilymphatic levels are known to be ∼140 mm. With this observation, we sought to determine the effects of perilymphatic chloride level manipulations of basilar membrane amplification in the living guinea pig. By either direct basolateral perfusion of the OHC with altered chloride content perilymphatic solutions or by the use of tributyltin, a chloride ionophore, we found alterations in OHC electromechanical activity and cochlear amplification, which are fully reversible. Because these anionic manipulations do not impact on the cation selective stereociliary process or the endolymphatic potential, our data lend additional support to the argument that prestin activity dominates the process of mammalian cochlear amplification.


The Journal of Neuroscience | 2004

Organ of Corti Potentials and the Motion of the Basilar Membrane

Anders Fridberger; Jacques Boutet de Monvel; Jiefu Zheng; Ning Hu; Yuan Zou; Tianying Ren; Alfred L. Nuttall

During sound stimulation, receptor potentials are generated within the sensory hair cells of the cochlea. Prevailing theory states that outer hair cells use the potential-sensitive motor protein prestin to convert receptor potentials into fast alterations of cellular length or stiffness that boost hearing sensitivity almost 1000-fold. However, receptor potentials are attenuated by the filter formed by the capacitance and resistance of the membrane of the cell. This attenuation would limit cellular motility at high stimulus frequencies, rendering the above scheme ineffective. Therefore, Dallos and Evans (1995a) proposed that extracellular potential changes within the organ of Corti could drive cellular motor proteins. These extracellular potentials are not filtered by the membrane. To test this theory, both electric potentials inside the organ of Corti and basilar membrane vibration were measured in response to acoustic stimulation. Vibrations were measured at sites very close to those interrogated by the recording electrode using laser interferometry. Close comparison of the measured electrical and mechanical tuning curves and time waveforms and their phase relationships revealed that those extracellular potentials indeed could drive outer hair cell motors. However, to achieve the sharp frequency tuning that characterizes the basilar membrane, additional mechanical processing must occur inside the organ of Corti.


Journal of the Acoustical Society of America | 2004

High-frequency electromotile responses in the cochlea

Karl Grosh; Jiefu Zheng; Yuan Zou; Egbert de Boer; Alfred L. Nuttall

Mammalian outer hair cells (OHCs) convert electrical energy into mechanical energy. The significance of this electromotility rests in the ability of the OHCs to modulate the vibrations of the cochlear partition in vivo. While high-frequency electromotility of isolated OHCs has been demonstrated at frequencies up to 100 kHz, a similar measure of the effect of OHC electromotility on motion of the sensory epithelium has not been made in vivo. In this study, in vivo electrical stimulation of the guinea pig cochlea is found to induce a mechanical response of the basilar membrane for frequencies to at least 100 kHz, nearly twice the upper limit of hearing for the guinea pig. The perfusion of salicylate in the cochlea reversibly reduces the electromotile response, indicating that an OHC-mediated process is the key contributor.


Hearing Research | 2006

Low coherence interferometry of the cochlear partition

Niloy Choudhury; Guiju Song; Fangyi Chen; Scott Matthews; Tanja Tschinkel; Jiefu Zheng; Steven L. Jacques; Alfred L. Nuttall

Interferometric measurement of the vibration of the organ of Corti in the isolated guinea pig cochlea was conducted using low-coherence light (1310+/-47 nm wavelength) from a superluminescent diode. The short coherence length of the light source localized measurements along the axial direction to within a approximately 10-microm window (in tissue), even when using a low numerical-aperture lens. The ability to accomplish this is important because measurement of the vibration of the basal-turn organ of Corti is generally done via a small hole in the bone of the cochlea, which effectively limits the numerical aperture. The axial localization, combined with the inherent sensitivity of the method, allowed distinct measurements of the basilar membrane (BM) and the putative reticular lamina (RL) vibration using only the native tissue reflectance, that is without requiring the use of reflective particles. The system was first operated in a scanning mode as an optical coherence tomography (OCT) system to yield an image of the organ of Corti. The reflectance of intensity from the BM and RL was 8x10(-5) and 8x10(-6), respectively. The internal structure between the BM and RL presented a variable reflectivity of about 10(-7). A mirror would define a reflectance of 1.00. Then the instrument was operated as a homodyne interferometer to measure the displacement of either the BM or RL. Vibration at 16 kHz was induced by a piezoelectric actuator, causing whole movement of a dissected cochlea. After calibration of the system, we demonstrated clear measurement of mechanically driven vibration for both the BM and RL of 0.30 nm above a noise floor equivalent to 0.03 nm. OCT interferometry, when adapted for in vivo organ of Corti measurements, appears suitable to determine the micromechanical vibration of cells and tissue elements of the organ.


Journal of the Acoustical Society of America | 2005

The Allen-Fahey experiment extended

Egbert de Boer; Alfred L. Nuttall; Ning Hu; Yuan Zou; Jiefu Zheng

An ingenious experiment has been performed by Allen and Fahey [J. Acoust. Soc. Am. 92, 178-188 (1992)], in which they attempted to estimate the gain of the cochlear amplifier by comparing responses to the 2 f1-f2 distortion product (DP) in the outer ear canal (otoacoustic emissions) and from an auditory-nerve fiber. Results were essentially negative: no evidence of cochlear amplification was found in that experiment. A variation of that experiment is reported here, where DP responses in the outer ear canal are compared with mechanical responses of the basilar membrane. This variation does not suffer from the major limitation in the original experiment in the choice of possible frequency ratios. Results confirm and extend those of Allen and Fahey entirely. Apparently, the gain of the cochlear amplifier cannot be measured in this way. It is argued that the retrograde wave going to the stapes is most likely reduced in magnitude by wave interference when the two primary frequencies approach each other. Such a reduction does not take place in the forward-going wave to the location tuned to the DP frequency. This explanation is illustrated on the basis of results of earlier experiments on the movements of the basilar membrane.


Journal of Biomedical Optics | 2007

In vivo imaging and low-coherence interferometry of organ of Corti vibration

Fangyi Chen; Niloy Choudhury; Jiefu Zheng; Scott Matthews; Alfred L. Nutall; Steven L. Jacques

An optical coherence tomography (OCT) system is built to acquire in vivo both images and vibration measurements of the organ of Corti of the guinea pig. The organ of Corti is viewed through a approximately 300-microm-diam hole in the bony wall of the cochlea at the scala tympani of the first cochlear turn. In imaging mode, the image is acquired as reflectance R(x,z). In vibration mode, the basilar membrane (BM) or reticular lamina (RL) are selected by the investigator interactively from the R(x,z) image. Under software control, the system moves the scanning mirrors to bring the sensing volume of the measurement to the desired membrane location. In vivo images of the organ of Corti are presented, indicating reflectance signals from the BM, RL, tectorial membrane, and Reissners membrane. The tunnel of Corti and the inner sulcus are also visible in the images. Vibrations of +/-2 and +/-22 nm are recorded in the BM in response to low and high sound levels at 14 kHz above a noise floor of 0.2 nm.


Journal of the Acoustical Society of America | 2003

Effect of current stimulus on in vivo cochlear mechanics

Anand Parthasarathi; Karl Grosh; Jiefu Zheng; Alfred L. Nuttall

In this paper, the influence of direct current stimulation on the acoustic impulse response of the basilar membrane (BM) is studied. A positive current applied in the scala vestibuli relative to a ground electrode in the scala tympani is found to enhance gain and increase the best frequency at a given location on the BM. An opposite effect is found for a negative current. Also, the amplitude of low-frequency cochlear microphonic at high sound levels is found to change with the concurrent application of direct current stimulus. BM vibrations in response to pure tone acoustic excitation are found to possess harmonics whose levels relative to the fundamental increase with the application of positive current and decrease with the application of negative current. A model for outer hair cell activity that couples changes in length and stiffness to transmembrane potential is used to interpret the results of these experiments and others in the literature. The importance of the in vivo mechanical and electrical loading is emphasized. Simulation results show the somewhat paradoxical finding that for outer hair cells under tension, hyperpolarization causes shortening of the cell length due to the dominance of voltage dependent stiffness changes.


Journal of the Acoustical Society of America | 2006

Cochlear transducer operating point adaptation

Yuan Zou; Jiefu Zheng; Tianying Ren; Alfred L. Nuttall

The operating point (OP) of outer hair cell (OHC) mechanotransduction can be defined as any shift away from the center position on the transduction function. It is a dc offset that can be described by percentage of the maximum transduction current or as an equivalent dc pressure in the ear canal. The change of OP can be determined from the changes of the second and third harmonics of the cochlear microphonic (CM) following a calibration of its initial value. We found that the initial OP was dependent on sound level and cochlear sensitivity. From CM generated by a lower sound level at 74dB SPL to avoid saturation and suppression of basal turn cochlear amplification, the OHC OP was at constant 57% of the maximum transduction current (an ear canal pressure of −0.1Pa). To perturb the OP, a constant force was applied to the bony shell of the cochlea at the 18kHz best frequency location using a blunt probe. The force applied over the scala tympani induced an OP change as if the organ of Corti moved toward the s...


Biophysical Journal | 2011

Persistence of Past Stimulations: Storing Sounds within the Inner Ear

Jiefu Zheng; Sripriya Ramamoorthy; Tianying Ren; Wenxuan He; Dingjun Zha; Fangyi Chen; Anna K. Magnusson; Alfred L. Nuttall; Anders Fridberger

Tones cause vibrations within the hearing organ. Conventionally, these vibrations are thought to reflect the input and therefore end with the stimulus. However, previous recordings of otoacoustic emissions and cochlear microphonic potentials suggest that the organ of Corti does continue to move after the end of a tone. These after-vibrations are characterized here through recordings of basilar membrane motion and hair cell extracellular receptor potentials in living anesthetized guinea pigs. We show that after-vibrations depend on the level and frequency of the stimulus, as well as on the sensitivity of the ear. Even a minor loss of hearing sensitivity caused a sharp reduction in after-vibration amplitude and duration. Mathematical models suggest that after-vibrations are driven by energy added into organ of Corti motion after the end of an acoustic stimulus. The possible importance of after-vibrations for psychophysical phenomena such as forward masking and gap detection are discussed.

Collaboration


Dive into the Jiefu Zheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl Grosh

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dingjun Zha

Fourth Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge