Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jieyao Li is active.

Publication


Featured researches published by Jieyao Li.


Oncology Reports | 2015

Epigenetic regulation of CD271, a potential cancer stem cell marker associated with chemoresistance and metastatic capacity

Sulan Li; Dongli Yue; Xinfeng Chen; Liping Wang; Jieyao Li; Yu Ping; Qun Gao; Dan Wang; Tengfei Zhang; Feng Li; Li Yang; Lan Huang; Yi Zhang

Cancer stem cells (CSCs) are considered to be the cause of tumor initiation, metastasis and recurrence. Additionally, CSCs are responsible for the failure of chemotherapy and radiotherapy. The isolation and identification of CSCs is crucial for facilitating the monitoring, therapy or prevention of cancer. We aimed to identify esophageal squamous cell carcinoma (ESCC) stem-like cells, the epigenetic mechanism and identify novel biomarkers for targeting ESCC CSCs. Sixty-three paired ESCC tissues and adjacent non-cancerous tissues were included in this study. CD271, which was identified as the CSC marker for melanoma, was assessed using quantitative PCR (qPCR). Using flow cytometry, we isolated CD271+ cells comprising 7.5% of cancer cells from the KYSE70 cell line. Sphere formation and anchorage-independent growth were analyzed in CD271+ and CD271− cancer cells, respectively. qPCR was used to detect stem-related genes and CCK-8 was performed to analyze the sensitivity to chemotherapy in the two groups. Bisulfite genomic sequencing was used to analyze the methylation status. CD271 expression was significantly higher in ESCC tissues than in adjacent non-cancerous tissues. Compared with CD271− cancer cells, CD271+ cancer cells showed a higher ability of sphere and colony formation, a high level expression of stem-related gene, and resistance to chemotherapy. The expression of CD271 was induced by a demethylation agent. In conclusion, CD271+ ESCC cells possess stem-like properties. CD271 can potentially act as a prognostic marker for ESCC, whose expression is regulated epigenetically.


International Journal of Cancer | 2016

Impaired T cell function in malignant pleural effusion is caused by TGF‐β derived predominantly from macrophages

Lifeng Li; Li Yang; Liping Wang; Fei Wang; Zhen Zhang; Jieyao Li; Dongli Yue; Xinfeng Chen; Yu Ping; Lan Huang; Bin Zhang; Yi Zhang

Malignant pleural effusion (MPE) is an indication of advanced cancer. Immune dysfunction often occurs in MPE. We aimed to identify the reason for impaired T cell activity in MPE from lung cancer patients and to provide clues toward potential immune therapies for MPE. The surface inhibitory molecules and cytotoxic activity of T cells in MPE and peripheral blood (PB) were analyzed using flow cytometry. Levels of inflammatory cytokines in MPE and PB were tested using ELISA. TGF‐β expression in tumor‐associated macrophages (TAMs) was also analyzed. The effect of TAMs on T cells was verified in vitro. Lastly, changes in T cells were evaluated following treatment with anti‐TGF‐β antibody. We found that expression levels of Tim‐3, PD‐1 and CTLA‐4 in T cells from MPE were upregulated compared with those from PB, but levels of IFN‐γ and Granzyme B were downregulated (p < 0.05). The amount of TGF‐β was significantly higher in MPE than in PB (p < 0.05). TGF‐β was mainly produced by TAMs in MPE. When T cells were co‐cultured with TAMs, expression levels of Tim‐3, PD‐1 and CTLA‐4 were significantly higher than controls, whereas levels of IFN‐γ and Granzyme B were significantly decreased, in a dose‐dependent manner (p < 0.05). In vitro treatment with anti‐TGF‐β antibody restored the impaired T cell cytotoxic activity in MPE. Our results indicate that macrophage‐derived TGF‐β plays an important role in impaired T cell cytotoxicity. It will therefore be valuable to develop therapeutic strategies against TGF‐β pathway for MPE therapy of lung cancer.


Cytotherapy | 2015

Phenotypic characterization and anti-tumor effects of cytokine-induced killer cells derived from cord blood

Zhen Zhang; Xianlan Zhao; Tengfei Zhang; Liping Wang; Lingzhu Yang; Lan Huang; Feng Li; Jinyan Liu; Dongli Yue; Fei Wang; Jieyao Li; Fangxia Guan; Yuming Xu; Bin Zhang; Yi Zhang

BACKGROUND AIMS Cytokine-induced killer (CIK) cell therapy represents a feasible immunotherapeutic option for treating malignancies. However, the number of anti-tumor lymphocytes cannot be easily obtained from the cancer patients with poor immunity status, and older patients cannot tolerate repeated collection of blood. Cord blood-derived CIK (CB-CIK) cells have shown efficacy in treating the patients with cancer in several clinical trials. This study was conducted to evaluate the biological characteristics and anti-tumor function of CB-CIK cells. METHODS The immunogenicity, chemokine receptors and proliferation of CB-CIK cells were analyzed by flow cytometry. The CIK cells on day 13 were treated with cisplatin and the anti-apoptosis capacity was analyzed. The function of CB-CIK cells against the human cancer was evaluated both in vitro and in vivo. RESULTS Compared with peripheral blood-derived CIK (PB-CIK) cells, CB-CIK cells demonstrated lower immunogenicity and increased proliferation rates. CB-CIK cells also had a higher percentage of main functional fraction CD3(+)CD56(+). The anti-apoptosis ability of CB-CIK cells after treatment with cisplatin was higher than that of PB-CIK cells. Furthermore, CB-CIK cells were effective for secreting interleukin-2 and interferon-γ and a higher percentage of chemokine receptors CCR6 and CCR7. In addition, tumor growth was greatly inhibited by CB-CIK treatment in a nude mouse xenograft model. CONCLUSIONS CB-CIK cells exhibit more efficient anti-tumor activity in in vitro analysis and in the preclinical model and may serve as a potential therapeutic approach for the treatment of cancer.


Experimental Cell Research | 2015

Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

Dongli Yue; Zhen Zhang; Jieyao Li; Xinfeng Chen; Yu Ping; Shasha Liu; Xiaojuan Shi; Lifeng Li; Liping Wang; Lan Huang; Bin Zhang; Yan Sun; Yi Zhang

Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be serially passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells.


OncoImmunology | 2017

CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancer

Jieyao Li; Liping Wang; Xinfeng Chen; Lifeng Li; Yu Li; Yu Ping; Lan Huang; Dongli Yue; Zhen Zhang; Fei Wang; Feng Li; Li Yang; Jianmin Huang; Shuangning Yang; Hong Li; Xuan Zhao; Wenjie Dong; Yan Yan; Song Zhao; Bo Huang; Bin Zhang; Yi Zhang

ABSTRACT CD39/CD73-adenosine pathway has been recently defined as an important tumor-induced immunosuppressive mechanism. We here documented a fraction of CD11b+CD33+ myeloid-derived suppressor cells (MDSCs) in peripheral blood and tumor tissues from non-small cell lung cancer (NSCLC) patients expressed surface ectonucleotidases CD39 and CD73. Tumor TGF-β stimulated CD39 and CD73 expression, thereby inhibited T cell and NK cell activity, and protected tumor cells from the cytotoxic effect of chemotherapy through ectonucleotidase activity. Mechanistically, TGF-β triggered phosphorylation of mammalian target of rapamycin, and subsequently activated hypoxia-inducible factor-1α (HIF-1α) that induced CD39/CD73 expression on MDSCs. CD39 and CD73 on MDSCs, therefore, link their immunosuppressive and chemo-protective effects to NSCLC progression, providing novel targets for chemo-immunotherapeutic intervention.


Oncotarget | 2017

Target of obstructive sleep apnea syndrome merge lung cancer: based on big data platform

Lifeng Li; Jingli Lu; Wenhua Xue; Liping Wang; Yunkai Zhai; Zhirui Fan; Ge Wu; Feifei Fan; Jieyao Li; Chaoqi Zhang; Yi Zhang; Jie Zhao

Based on our hospital database, the incidence of lung cancer diagnoses was similar in obstructive sleep apnea Syndrome (OSAS) and hospital general population; among individual with a diagnosis of lung cancer, the presence of OSAS was associated with an increased risk for mortality. In the gene expression and network-level information, we revealed significant alterations of molecules related to HIF1 and metabolic pathways in the hypoxic-conditioned lung cancer cells. We also observed that GBE1 and HK2 are downstream of HIF1 pathway important in hypoxia-conditioned lung cancer cell. Furthermore, we used publicly available datasets to validate that the late-stage lung adenocarcinoma patients showed higher expression HK2 and GBE1 than early-stage ones. In terms of prognostic features, a survival analysis revealed that the high GBE1 and HK2 expression group exhibited poorer survival in lung adenocarcinoma patients. By analyzing and integrating multiple datasets, we identify molecular convergence between hypoxia and lung cancer that reflects their clinical profiles and reveals molecular pathways involved in hypoxic-induced lung cancer progression. In conclusion, we show that OSAS severity appears to increase the risk of lung cancer mortality.


Cancer Research | 2018

Metformin-Induced Reduction of CD39 and CD73 Blocks Myeloid-Derived Suppressor Cell Activity in Patients with Ovarian Cancer

Lifeng Li; Liping Wang; Jieyao Li; Zhirui Fan; Li Yang; Zhen Zhang; Chaoqi Zhang; Dongli Yue; Guohui Qin; Tengfei Zhang; Feng Li; Xinfeng Chen; Yu Ping; Dan Wang; Qun Gao; Qianyi He; Lan Huang; Hong Li; Jianmin Huang; Xuan Zhao; Wenhua Xue; Zhi Sun; Jingli Lu; Jane Yu; Jie Zhao; Bin Zhang; Yi Zhang

Metformin is a broadly prescribed drug for type 2 diabetes that exerts antitumor activity, yet the mechanisms underlying this activity remain unclear. We show here that metformin treatment blocks the suppressive function of myeloid-derived suppressor cells (MDSC) in patients with ovarian cancer by downregulating the expression and ectoenzymatic activity of CD39 and CD73 on monocytic and polymononuclear MDSC subsets. Metformin triggered activation of AMP-activated protein kinase α and subsequently suppressed hypoxia-inducible factor α, which was critical for induction of CD39/CD73 expression in MDSC. Furthermore, metformin treatment correlated with longer overall survival in diabetic patients with ovarian cancer, which was accompanied by a metformin-induced reduction in the frequency of circulating CD39+CD73+ MDSC and a concomitant increase in the antitumor activities of circulating CD8+ T cells. Our results highlight a direct effect of metformin on MDSC and suggest that metformin may yield clinical benefit through improvement of antitumor T-cell immunity by dampening CD39/CD73-dependent MDSC immunosuppression in ovarian cancer patients.Significance: The antitumor activity of an antidiabetes drug is attributable to reduced immunosuppressive activity of myeloid-derived tumor suppressor cells. Cancer Res; 78(7); 1779-91. ©2018 AACR.


Oncology Letters | 2017

Expression and prognostic relevance of MAGE-A3 and MAGE-C2 in non-small cell lung cancer

Xinfeng Chen; Liping Wang; Jinyan Liu; Lan Huang; Li Yang; Qun Gao; Xiaojuan Shi; Jieyao Li; Feng Li; Zhen Zhang; Song Zhao; Bin Zhang; Pierre van der Bruggen; Yi Zhang

Melanoma-associated antigen (MAGE)-A3 and MAGE-C2 are antigens encoded by cancer-germline genes, and have been recognized as potential prognostic biomarkers and attractive targets for immunotherapy in multiple types of cancer. The present study aimed to analyze the clinicopathological significance of MAGE-A3/C2 expression in non-small cell lung cancer (NSCLC). The association between MAGE-A3/C2 mRNA and protein expression, and the pathological characteristics and overall survival of patients with NSCLC was analyzed. In addition, the functional role of MAGE-A3 in human NSCLC cell line A549 was examined in vitro. MAGE-A3/C2 mRNA expression was identified in 73% (151/206) and 53% (109/206) of patients with NSCLC, respectively. MAGE-A3/C2 protein expression was identified in 58% (44/76) and 53% (40/76) of NSCLC cases, respectively. MAGE-A3 mRNA expression was observed to be associated with smoking history, disease stage and lymph node metastasis. However, no association was identified between MAGE-C2 mRNA expression and the clinicopathological characteristics of patients with NSCLC. MAGE-A3/C2-positive patients had a poorer survival rate compared with MAGE-A3/C2-negative patients. Multivariate analysis identified that MAGE-A3 expression may serve as an independent marker of poor prognosis in patients with NSCLC. Downregulation of MAGE-A3 mRNA expression in A549 cells resulted in lower migration and colony formation rates, and a higher amount of epithelial marker and lower amount of mesenchymal marker expression compared with the control group. These results indicate that MAGE-A3 serves a role in NSCLC cell metastasis through the induction of epithelial-mesenchymal transition. In conclusion, MAGE-A3 may serve as a diagnostic and prognostic biomarker for patients with NSCLC, due to its association with tumor progression and poor clinical outcome.


Oncotarget | 2017

miR-29a-3p suppresses cell proliferation and migration by downregulating IGF1R in hepatocellular carcinoma

Xiao Wang; Shasha Liu; Ling Cao; Tengfei Zhang; Dongli Yue; Liping Wang; Yu Ping; Qianyi He; Chaoqi Zhang; Meng Wang; Xinfeng Chen; Qun Gao; Dan Wang; Zhen Zhang; Fei Wang; Li Yang; Jieyao Li; Lan Huang; Bin Zhang; Yi Zhang

Hepatocellular carcinoma (HCC), the most common primary tumor of the liver, has a poor prognosis and rapid progression. MicroRNAs (miRNAs) play important roles in carcinogenesis and tumor progression. Insulin-like growth factor 1 receptor (IGF1R) is a transmembrane heterotetrameric protein that has been reported to promote transformation to malignancy and cancer cell proliferation and survival. In this study, we found that the expression of miR-29a-3p was downregulated in HCC patients, resulting in poor survival rates. Contrastingly, the overexpression of miR-29a-3p significantly inhibited proliferation and migration in HepG2 cells. miR-29a-3p directly targeted IGF1R and down-regulated its expression. Moreover, knockdown of IGF1R led to the increased production of chemokine ligand 5 (CCL5). In tumor lesions, the local expression of CCL5 negatively affected the expression of IGF1R. Transwell analysis showed that CCL5 was important for the chemotactic movement of CD8+ T lymphocytes. The expression of CCL5 in HCC tissues positively correlated with the expression of CD8+ T lymphocyte surface marker, CD8. Patients with high CCL5 expression exhibited better survival. Our results revealed that miR-29a-3p is a tumor suppressor gene that acts by directly repressing the oncogene IGF1R, which takes part in immunoregulation in tumor microenvironments in HCC, implying that miR-29a-3p could be a potential target for HCC treatment.


Chemistry of Natural Compounds | 2011

Chemical constituents from the roots of Senecio scandens

Chongxian Wang; Jieyao Li; Yun-Fei Zhang; Zhengquan Zhang

The chemical constituents of the roots of Senecio scandens Buch.-Ham. grown in the Funiu mountains in China have been investigated. Four compounds were isolated and identified as β−sitosterol (1), pentacosanoic acid (2), 19α-H lupeone (3), and sucrose (4). The structures of these compounds were elucidated on the basis of chemical and spectroscopic evidence. 19α-H Lupeone (3) was isolated as a single compound and its structure established unambiguously by the spectral method for the first time, and 1H and 13C NMR data were assigned wholly by 1D and 2D NMR.

Collaboration


Dive into the Jieyao Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Zhang

Zhengzhou University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Zhang

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Li

Zhengzhou University

View shared research outputs
Top Co-Authors

Avatar

Li Yang

Zhengzhou University

View shared research outputs
Top Co-Authors

Avatar

Yu Ping

Zhengzhou University

View shared research outputs
Researchain Logo
Decentralizing Knowledge