Jiguang Deng
Beijing University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiguang Deng.
Environmental Science & Technology | 2012
Fang Wang; Hongxing Dai; Jiguang Deng; Guangmei Bai; Kemeng Ji; Yuxi Liu
Nanosized rod-like, wire-like, and tubular α-MnO(2) and flower-like spherical Mn(2)O(3) have been prepared via the hydrothermal method and the CCl(4) solution method, respectively. The physicochemical properties of the materials were characterized using numerous analytical techniques. The catalytic activities of the catalysts were evaluated for toluene oxidation. It is shown that α-MnO(2) nanorods, nanowires, and nanotubes with a surface area of 45-83 m(2)/g were tetragonal in crystal structure, whereas flower-like spherical Mn(2)O(3) with a surface area of 162 m(2)/g was of cubic crystal structure. There were the presence of surface Mn ions in multiple oxidation states (e.g., Mn(3+), Mn(4+), or even Mn(2+)) and the formation of surface oxygen vacancies. The oxygen adspecies concentration and low-temperature reducibility decreased in the order of rod-like α-MnO(2) > tube-like α-MnO(2) > flower-like Mn(2)O(3) > wire-like α-MnO(2), in good agreement with the sequence of the catalytic performance of these samples. The best-performing rod-like α-MnO(2) catalyst could effectively catalyze the total oxidation of toluene at lower temperatures (T(50%) = 210 °C and T(90%) = 225 °C at space velocity = 20,000 mL/(g h)). It is concluded that the excellent catalytic performance of α-MnO(2) nanorods might be associated with the high oxygen adspecies concentration and good low-temperature reducibility. We are sure that such one-dimensional well-defined morphological manganese oxides are promising materials for the catalytic elimination of air pollutants.
Environmental Science & Technology | 2009
Yunsheng Xia; Hongxing Dai; Haiyan Jiang; Jiguang Deng; Hong He; C.T. Au
Mesoporous chromia with ordered three-dimensional (3D) hexagonal polycrystalline structures were fabricated at 130, 180, 240, 280, and 350 degrees C in an autoclave through a novel solvent-free route using KIT-6 as the hard template. The as-obtained materials were characterized (by means of X-ray diffraction, transmission electron microscopy, N(2) adsorption-desorption, temperature-programmed reduction, and X-ray photoelectron spectroscopy techniques) and tested as a catalyst for the complete oxidation of toluene and ethyl acetate. We found that with a high surface area of 106 m(2)/g and being multivalent (Cr(3+), Cr(5+), and Cr(6+)), the chromia (meso-Cr-240) fabricated at 240 degrees C is the best among the five in catalytic performance. According to the results of the temperature-programmed reduction and X-ray photoelectron spectroscopy investigations, it is apparent that the coexistence of multiple chromium species promotes the low-temperature reducibility of chromia. The excellent performance of meso-Cr-240 is because of good 3D mesoporosity and low-temperature reducibility as well as the high surface area of the chromia. The combustion follows a first-order reaction with respect to toluene or ethyl acetate in the presence of excess oxygen, and the corresponding average activation energy is 79.8 and 51.9 kJ/mol, respectively, over the best-performing catalyst.
Journal of Hazardous Materials | 2012
Haiyan Jiang; Xue Meng; Hongxing Dai; Jiguang Deng; Yuxi Liu; Lei Zhang; Zhenxuan Zhao; Ruzhen Zhang
Monoclinic BiVO(4) single-crystallites with a polyhedral, spherical or porous octapod-like morphology were selectively prepared using the triblock copolymer P123 (HO(CH(2)CH(2)O)(20)(CH(2)CH(CH(3))O)(70)(CH(2)CH(2)O)(20)H)-assisted hydrothermal method with bismuth nitrate and ammonium metavanadate as metal source and various bases as pH adjustor. The BiVO(4) materials were well characterized and their photocatalytic activities were evaluated for the removal of methylene blue (MB) and phenol in the presence of a small amount of H(2)O(2) under visible-light illumination. It is shown that the pH value of the precursor solution, surfactant, and hydrothermal temperature had an important impact on particle architecture of the BiVO(4) product. The introduction of P123 favored the generation of BiVO(4) with porous structures. The BiVO(4) derived hydrothermally with P123 at pH 3 or 6 possessed good optical absorption performance both in UV- and visible-light regions and hence showed excellent photocatalytic activities for the degradation of MB and phenol. It is concluded that the high visible-light-driven catalytic performance of the porous octapod-like BiVO(4) single-crystallites is associated with the higher surface area, porous structure, lower band gap energy, and unique particle morphology. Such porous BiVO(4) materials are useful in the solar-light-driven photocatalytic treatment of organic-containing wastewater.
Inorganic Chemistry | 2011
Ruzhen Zhang; Hongxing Dai; Yucheng Du; Lei Zhang; Jiguang Deng; Yunsheng Xia; Zhenxuan Zhao; Xue Meng; Yuxi Liu
Three-dimensionally (3D) ordered macroporous (3DOM) iron oxides with nanovoids in the rhombohedrally crystallized macroporous walls were fabricated by adopting the dual-templating [Pluronic P123 and poly(methyl methacrylate) (PMMA) colloidal microspheres] strategy with ferric nitrate as the metal precursor in an ethanol or ethylene glycol and methanol mixed solution and after calcination at 550 °C. The possible formation mechanisms of such architectured materials were discussed. The physicochemical properties of the materials were characterized by means of techniques such as XRD, TGA/DSC, FT-IR, BET, HRSEM, HRTEM/SAED, UV-vis, XPS, and H(2)-TPR. The catalytic properties of the materials were also examined using toluene oxidation as a probe reaction. It is shown that 3DOM-structured α-Fe(2)O(3) without nanovoids in the macroporous walls was formed in the absence of P123 during the fabrication process, whereas the dual-templating strategy gave rise to α-Fe(2)O(3) materials that possessed high-quality 3DOM structures with the presence of nanovoids in the polycrystalline macropore walls and higher surface areas (32-46 m(2)/g). The surfactant P123 played a key role in the generation of nanovoids within the walls of the 3DOM-architectured iron oxides. There was the presence of multivalent iron ions and adsorbed oxygen species on the surface of each sample, with the trivalent iron ion and oxygen adspecies concentrations being different from sample to sample. The dual-templating fabricated iron oxide samples exhibited much better low-temperature reducibility than the bulk counterpart. The copresence of a 3DOM-structured skeleton and nanovoids in the macropore walls gave rise to a drop in the band-gap energy of iron oxide. The higher oxygen adspecies amounts, larger surface areas, better low-temperature reducibility, and unique nanovoid-containing 3DOM structures of the iron oxide materials accounted for their excellent catalytic performance in the oxidation of toluene.
Environmental Science & Technology | 2010
Jiguang Deng; Hongxing Dai; Haiyan Jiang; Lei Zhang; Guozhi Wang; Hong He; C.T. Au
A series of La(1-x)Sr(x)M(1-y)Fe(y)O(3) (M = Mn, Co; x = 0, 0.4; y = 0.1, 1.0) perovskite-type oxide catalysts have been fabricated via a strategy of citric acid complexation coupled with hydrothermal treatment. The materials are characterized by a number of analytical techniques. The oxidation of toluene is used as a probe reaction for the evaluation of catalytic performance. It is found that both La(0.6)Sr(0.4)FeO(3) and LaFeO(3) exhibit high activities. The partial substitution of manganese and cobalt with iron can significantly improve the catalytic performance of La(0.6)Sr(0.4)MnO(3) and La(0.6)Sr(0.4)CoO(3). At toluene/O(2) molar ratio = 1/200 and space velocity = 20,000 h(-1), the catalytic activity decreases in the sequence of La(0.6)Sr(0.4)Co(0.9)Fe(0.1)O(3) > La(0.6)Sr(0.4)FeO(3) > La(0.6)Sr(0.4)Mn(0.9)Fe(0.1)O(3) > LaFeO(3) > La(0.6)Sr(0.4)CoO(3) > La(0.6)Sr(0.4)MnO(3). Compared to the Fe-free counterparts, the La(0.6)Sr(0.4)Mn(0.9)Fe(0.1)O(3) and La(0.6)Sr(0.4)Co(0.9)Fe(0.1)O(3) catalysts are, respectively, 50 and 85 degrees C lower with regard to the temperature required for complete toluene oxidation. Toluene can be completely oxidized at 245 degrees C over La(0.6)Sr(0.4)Co(0.9)Fe(0.1)O(3). The excellent catalytic performance of La(0.6)Sr(0.4)Co(0.9)Fe(0.1)O(3) can be attributed to the presence of (i) Fe(3+)-O-Fe(4+) couples, (ii) a transition of electronic structure, and (iii) a trace amount of Co(3)O(4).
Inorganic Chemistry | 2008
Guozhi Wang; Lei Zhang; Hongxing Dai; Jiguang Deng; Caixin Liu; Hong He; C.T. Au
By adopting the strategy of dissolution-recrystallization under hydrothermal conditions (at 240 degrees C for 72 h) in the presence of a triblock copolymer (Pluronic P123), we fabricated nano- and microparticles of single-crystalline MgO of rectangular parallelepiped and hexagonal prism morphologies. The MgO crystallites display three-dimensional wormholelike mesopores and have a surface area as high as 298 m(2)/g even after calcination at 550 degrees C for 3 h.
Journal of Hazardous Materials | 2011
Yunsheng Xia; Hongxing Dai; Haiyan Jiang; Lei Zhang; Jiguang Deng; Yuxi Liu
Three-dimensionally (3D) ordered and wormhole-like mesoporous iron oxides (denoted as Fe-KIT6 and Fe-CA) were respectively prepared by adopting the 3D ordered mesoporous silica KIT-6-templating and modified citric acid-complexing strategies, and characterized by a number of analytical techniques. It is shown that the Fe-KIT6-400 and Fe-CA-400 catalysts derived after 400°C-calcination possessed high surface areas (113-165 m(2)/g), high surface adsorbed oxygen concentrations, and good low-temperature reducibility, giving 90% conversion below 189 and 208°C for acetone and methanol oxidation at 20,000 mL/(g h), respectively. It is believed that the good catalytic performance of Fe-CA-400 and Fe-KIT6-400 was related to factors such as higher surface area and oxygen adspecies concentration, better low-temperature reducibility, and 3D mesoporous architecture.
Inorganic Chemistry | 2013
Yuxi Liu; Hongxing Dai; Jiguang Deng; Lei Zhang; Zhenxuan Zhao; Xinwei Li; Yuan Wang; Shaohua Xie; Huanggen Yang; Guangsheng Guo
Uniform hollow spherical rhombohedral LaMO3 and solid spherical cubic MOx (M = Mn and Co) NPs were fabricated using the PMMA-templating strategy. Hollow spherical LaMO3 and solid spherical MOx NPs possessed surface areas of 21-33 and 21-24 m(2)/g, respectively. There were larger amounts of surface-adsorbed oxygen species and better low-temperature reducibility on/of the hollow spherical LaMO3 samples than on/of the solid spherical MOx samples. Hollow spherical LaMO3 and solid spherical MOx samples outperformed their nanosized counterparts for oxidation of CO and toluene, with the best catalytic activity being achieved over the solid spherical Co3O4 sample for CO oxidation (T50% = 81 °C and T90% = 109 °C) at space velocity = 10,000 mL/(g h) and the hollow spherical LaCoO3 sample for toluene oxidation (T50% = 220 °C and T90% = 237 °C) at space velocity = 20,000 mL/(g h). It is concluded that the higher surface areas and oxygen adspecies concentrations and better low-temperature reducibility are responsible for the excellent catalytic performance of the hollow spherical LaCoO3 and solid spherical Co3O4 NPs. We believe that the PMMA-templating strategy provides an effective route to prepare uniform perovskite-type oxide and transition-metal oxide NPs.
Journal of Environmental Sciences-china | 2012
Haiyan Jiang; Hongxing Dai; Xue Meng; Lei Zhang; Jiguang Deng; Yuxi Liu; C.T. Au
Monoclinic BiVO4 with multiple morphologies and/or porous structures were fabricated using the hydrothermal strategy. The materials were characterized by means of the XRD, Raman, TGA/DSC, SEM, XPS, and UV-Vis techniques. The photocatalytic activities of the BiVO4 materials were evaluated for the degradation of Methyl Orange under visible-light irradiation. It is observed that pH value and surfactant exerted a great effect on the morphology and pore structure of the BiVO4 product. Spherical BiVO4 with porous structures, flower-cluster-like BiVO4, and flower-bundle-like BiVO4 were generated hydrothermally at 100 degrees C with poly(vinyl pyrrolidone) (PVP) and urea (pH = 2) and at 160 degrees C with NaHCO3 (pH = 7 and 8), respectively. The PVP-derived BiVO4 showed much higher surface areas (5.0-8.4 m2/g) and narrower bandgap energies (2.45-2.49 eV). The best photocatalytic performance of the spherical BiVO4 material with a surface area of 8.4 m2/g was associated with its higher surface area, narrower bandgap energy, higher surface oxygen vacancy density, and unique porous architecture.
Journal of Hazardous Materials | 2014
Shaohua Xie; Hongxing Dai; Jiguang Deng; Huanggen Yang; Wen Han; Hamidreza Arandiyan; Guangsheng Guo
Three-dimensionally ordered macroporous (3DOM) Mn2O3 and its supported gold (xAu/3DOM Mn2O3, x=1.9-7.5wt%) nanocatalysts were prepared using the polymethyl methacrylate-templating and polyvinyl alcohol-protected reduction methods, respectively. The 3DOM Mn2O3 and xAu/3DOM Mn2O3 samples exhibited a surface area of 34-38m(2)/g. The Au nanoparticles (NPs) with a size of 3.0-3.5nm were uniformly dispersed on the skeletons of 3DOM Mn2O3. The 5.8Au/3DOM Mn2O3 sample performed the best, giving the T90% (the temperature required for a conversion of 90%) of -15°C at space velocity (SV)=20,000mL/(gh) for CO oxidation and 244°C at SV=40,000mL/(gh) for toluene oxidation. The apparent activation energies (30 and 54kJ/mol) over 5.8Au/3DOM Mn2O3 were much lower than those (80 and 95kJ/mol) over 3DOM Mn2O3 for CO and toluene oxidation, respectively. The effects of SV, water vapor, CO2, and SO2 on catalytic activity were also examined. It is concluded that the excellent catalytic performance of 5.8Au/3DOM Mn2O3 was associated with its high oxygen adspecies concentration, good low-temperature reducibility, and strong interaction between Au NPs and 3DOM Mn2O3 as well as high-quality porous architecture.