Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuxi Liu is active.

Publication


Featured researches published by Yuxi Liu.


Environmental Science & Technology | 2012

Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene.

Fang Wang; Hongxing Dai; Jiguang Deng; Guangmei Bai; Kemeng Ji; Yuxi Liu

Nanosized rod-like, wire-like, and tubular α-MnO(2) and flower-like spherical Mn(2)O(3) have been prepared via the hydrothermal method and the CCl(4) solution method, respectively. The physicochemical properties of the materials were characterized using numerous analytical techniques. The catalytic activities of the catalysts were evaluated for toluene oxidation. It is shown that α-MnO(2) nanorods, nanowires, and nanotubes with a surface area of 45-83 m(2)/g were tetragonal in crystal structure, whereas flower-like spherical Mn(2)O(3) with a surface area of 162 m(2)/g was of cubic crystal structure. There were the presence of surface Mn ions in multiple oxidation states (e.g., Mn(3+), Mn(4+), or even Mn(2+)) and the formation of surface oxygen vacancies. The oxygen adspecies concentration and low-temperature reducibility decreased in the order of rod-like α-MnO(2) > tube-like α-MnO(2) > flower-like Mn(2)O(3) > wire-like α-MnO(2), in good agreement with the sequence of the catalytic performance of these samples. The best-performing rod-like α-MnO(2) catalyst could effectively catalyze the total oxidation of toluene at lower temperatures (T(50%) = 210 °C and T(90%) = 225 °C at space velocity = 20,000 mL/(g h)). It is concluded that the excellent catalytic performance of α-MnO(2) nanorods might be associated with the high oxygen adspecies concentration and good low-temperature reducibility. We are sure that such one-dimensional well-defined morphological manganese oxides are promising materials for the catalytic elimination of air pollutants.


Journal of Hazardous Materials | 2012

High-performance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination

Haiyan Jiang; Xue Meng; Hongxing Dai; Jiguang Deng; Yuxi Liu; Lei Zhang; Zhenxuan Zhao; Ruzhen Zhang

Monoclinic BiVO(4) single-crystallites with a polyhedral, spherical or porous octapod-like morphology were selectively prepared using the triblock copolymer P123 (HO(CH(2)CH(2)O)(20)(CH(2)CH(CH(3))O)(70)(CH(2)CH(2)O)(20)H)-assisted hydrothermal method with bismuth nitrate and ammonium metavanadate as metal source and various bases as pH adjustor. The BiVO(4) materials were well characterized and their photocatalytic activities were evaluated for the removal of methylene blue (MB) and phenol in the presence of a small amount of H(2)O(2) under visible-light illumination. It is shown that the pH value of the precursor solution, surfactant, and hydrothermal temperature had an important impact on particle architecture of the BiVO(4) product. The introduction of P123 favored the generation of BiVO(4) with porous structures. The BiVO(4) derived hydrothermally with P123 at pH 3 or 6 possessed good optical absorption performance both in UV- and visible-light regions and hence showed excellent photocatalytic activities for the degradation of MB and phenol. It is concluded that the high visible-light-driven catalytic performance of the porous octapod-like BiVO(4) single-crystallites is associated with the higher surface area, porous structure, lower band gap energy, and unique particle morphology. Such porous BiVO(4) materials are useful in the solar-light-driven photocatalytic treatment of organic-containing wastewater.


Inorganic Chemistry | 2011

P123-PMMA dual-templating generation and unique physicochemical properties of three-dimensionally ordered macroporous iron oxides with nanovoids in the crystalline walls.

Ruzhen Zhang; Hongxing Dai; Yucheng Du; Lei Zhang; Jiguang Deng; Yunsheng Xia; Zhenxuan Zhao; Xue Meng; Yuxi Liu

Three-dimensionally (3D) ordered macroporous (3DOM) iron oxides with nanovoids in the rhombohedrally crystallized macroporous walls were fabricated by adopting the dual-templating [Pluronic P123 and poly(methyl methacrylate) (PMMA) colloidal microspheres] strategy with ferric nitrate as the metal precursor in an ethanol or ethylene glycol and methanol mixed solution and after calcination at 550 °C. The possible formation mechanisms of such architectured materials were discussed. The physicochemical properties of the materials were characterized by means of techniques such as XRD, TGA/DSC, FT-IR, BET, HRSEM, HRTEM/SAED, UV-vis, XPS, and H(2)-TPR. The catalytic properties of the materials were also examined using toluene oxidation as a probe reaction. It is shown that 3DOM-structured α-Fe(2)O(3) without nanovoids in the macroporous walls was formed in the absence of P123 during the fabrication process, whereas the dual-templating strategy gave rise to α-Fe(2)O(3) materials that possessed high-quality 3DOM structures with the presence of nanovoids in the polycrystalline macropore walls and higher surface areas (32-46 m(2)/g). The surfactant P123 played a key role in the generation of nanovoids within the walls of the 3DOM-architectured iron oxides. There was the presence of multivalent iron ions and adsorbed oxygen species on the surface of each sample, with the trivalent iron ion and oxygen adspecies concentrations being different from sample to sample. The dual-templating fabricated iron oxide samples exhibited much better low-temperature reducibility than the bulk counterpart. The copresence of a 3DOM-structured skeleton and nanovoids in the macropore walls gave rise to a drop in the band-gap energy of iron oxide. The higher oxygen adspecies amounts, larger surface areas, better low-temperature reducibility, and unique nanovoid-containing 3DOM structures of the iron oxide materials accounted for their excellent catalytic performance in the oxidation of toluene.


Journal of Hazardous Materials | 2011

Three-dimensionally ordered and wormhole-like mesoporous iron oxide catalysts highly active for the oxidation of acetone and methanol.

Yunsheng Xia; Hongxing Dai; Haiyan Jiang; Lei Zhang; Jiguang Deng; Yuxi Liu

Three-dimensionally (3D) ordered and wormhole-like mesoporous iron oxides (denoted as Fe-KIT6 and Fe-CA) were respectively prepared by adopting the 3D ordered mesoporous silica KIT-6-templating and modified citric acid-complexing strategies, and characterized by a number of analytical techniques. It is shown that the Fe-KIT6-400 and Fe-CA-400 catalysts derived after 400°C-calcination possessed high surface areas (113-165 m(2)/g), high surface adsorbed oxygen concentrations, and good low-temperature reducibility, giving 90% conversion below 189 and 208°C for acetone and methanol oxidation at 20,000 mL/(g h), respectively. It is believed that the good catalytic performance of Fe-CA-400 and Fe-KIT6-400 was related to factors such as higher surface area and oxygen adspecies concentration, better low-temperature reducibility, and 3D mesoporous architecture.


Inorganic Chemistry | 2013

Controlled Generation of Uniform Spherical LaMnO3, LaCoO3, Mn2O3, and Co3O4 Nanoparticles and Their High Catalytic Performance for Carbon Monoxide and Toluene Oxidation

Yuxi Liu; Hongxing Dai; Jiguang Deng; Lei Zhang; Zhenxuan Zhao; Xinwei Li; Yuan Wang; Shaohua Xie; Huanggen Yang; Guangsheng Guo

Uniform hollow spherical rhombohedral LaMO3 and solid spherical cubic MOx (M = Mn and Co) NPs were fabricated using the PMMA-templating strategy. Hollow spherical LaMO3 and solid spherical MOx NPs possessed surface areas of 21-33 and 21-24 m(2)/g, respectively. There were larger amounts of surface-adsorbed oxygen species and better low-temperature reducibility on/of the hollow spherical LaMO3 samples than on/of the solid spherical MOx samples. Hollow spherical LaMO3 and solid spherical MOx samples outperformed their nanosized counterparts for oxidation of CO and toluene, with the best catalytic activity being achieved over the solid spherical Co3O4 sample for CO oxidation (T50% = 81 °C and T90% = 109 °C) at space velocity = 10,000 mL/(g h) and the hollow spherical LaCoO3 sample for toluene oxidation (T50% = 220 °C and T90% = 237 °C) at space velocity = 20,000 mL/(g h). It is concluded that the higher surface areas and oxygen adspecies concentrations and better low-temperature reducibility are responsible for the excellent catalytic performance of the hollow spherical LaCoO3 and solid spherical Co3O4 NPs. We believe that the PMMA-templating strategy provides an effective route to prepare uniform perovskite-type oxide and transition-metal oxide NPs.


Journal of Environmental Sciences-china | 2012

Hydrothermal fabrication and visible-light-driven photocatalytic properties of bismuth vanadate with multiple morphologies and/or porous structures for Methyl Orange degradation

Haiyan Jiang; Hongxing Dai; Xue Meng; Lei Zhang; Jiguang Deng; Yuxi Liu; C.T. Au

Monoclinic BiVO4 with multiple morphologies and/or porous structures were fabricated using the hydrothermal strategy. The materials were characterized by means of the XRD, Raman, TGA/DSC, SEM, XPS, and UV-Vis techniques. The photocatalytic activities of the BiVO4 materials were evaluated for the degradation of Methyl Orange under visible-light irradiation. It is observed that pH value and surfactant exerted a great effect on the morphology and pore structure of the BiVO4 product. Spherical BiVO4 with porous structures, flower-cluster-like BiVO4, and flower-bundle-like BiVO4 were generated hydrothermally at 100 degrees C with poly(vinyl pyrrolidone) (PVP) and urea (pH = 2) and at 160 degrees C with NaHCO3 (pH = 7 and 8), respectively. The PVP-derived BiVO4 showed much higher surface areas (5.0-8.4 m2/g) and narrower bandgap energies (2.45-2.49 eV). The best photocatalytic performance of the spherical BiVO4 material with a surface area of 8.4 m2/g was associated with its higher surface area, narrower bandgap energy, higher surface oxygen vacancy density, and unique porous architecture.


Environmental Science & Technology | 2015

Ultralow Loading of Silver Nanoparticles on Mn2O3 Nanowires Derived with Molten Salts: A High-Efficiency Catalyst for the Oxidative Removal of Toluene

Jiguang Deng; Shengnan He; Shaohua Xie; Huanggen Yang; Yuxi Liu; Guangsheng Guo; Hongxing Dai

Using a mixture of NaNO3 and NaF as molten salt and MnSO4 and AgNO3 as metal precursors, 0.13 wt % Ag/Mn2O3 nanowires (0.13Ag/Mn2O3-ms) were fabricated after calcination at 420 °C for 2 h. Compared to the counterparts derived via the impregnation and poly(vinyl alcohol)-protected reduction routes as well as the bulk Mn2O3-supported silver catalyst, 0.13Ag/Mn2O3-ms exhibited a much higher catalytic activity for toluene oxidation. At a toluene/oxygen molar ratio of 1/400 and a space velocity of 40,000 mL/(g h), toluene could be completely oxidized into CO2 and H2O at 220 °C over the 0.13Ag/Mn2O3-ms catalyst. Furthermore, the toluene consumption rate per gram of noble metal over 0.13Ag/Mn2O3-ms was dozens of times as high as that over the supported Au or AuPd alloy catalysts reported in our previous works. It is concluded that the excellent catalytic activity of 0.13Ag/Mn2O3-ms was associated with its high dispersion of silver nanoparticles on the surface of Mn2O3 nanowires and good low-temperature reducibility. Due to high efficiency, good stability, low cost, and convenient preparation, 0.13Ag/Mn2O3-ms is a promising catalyst for the practical removal of volatile organic compounds.


Chinese Journal of Catalysis | 2013

Mesoporous LaFeO3 catalysts for the oxidation of toluene and carbon monoxide

Baozu Gao; Jiguang Deng; Yuxi Liu; Zhenxuan Zhao; Xinwei Li; Yuan Wang; Hongxing Dai

Abstract Wormhole-like orthorhombic LaFeO3 catalysts (LFO-1 and LFO-2) were prepared using the KIT-6 and SiO2 nanospheres as template, respectively. LFO-1 showed better catalytic activity with T50% and T90% of 155 and 180 °C for CO oxidation, and of 200 and 253 °C for toluene oxidation at 20000 mL/(g·h). The excellent catalytic performance was associated with its larger surface area (138 m2/g), higher adsorbed oxygen concentration, and better low-temperature reducibility as well as a wormhole-like mesoporous structure.


Chinese Journal of Catalysis | 2013

Effect of Sulfur Doping on the Photocatalytic Performance of BiVO4 under Visible Light Illumination

Zhenxuan Zhao; Hongxing Dai; Jiguang Deng; Yuxi Liu; C.T. Au

Porous monoclinic bismuth vanadate (BiVO(subscript 4-δ)) and sulfur‐doped bismuth vanadates (BiVO(subscript 4-δ)S(subscript 0.05), BiVO(subscript 4-δ)S(subscript 0.08), and BiVO(subscript 4-δ)S(subscript 0.12)) were synthesized by a dodecylamine‐assisted alcohol‐hydrothermal route in the absence and presence of thiourea or Na2S. The physicochemical properties of the materials were characterized and their photocatalytic performance for the degradation of methylene blue and formaldehyde under visible light was evaluated. The samples have a single phase monoclinic scheetlite crystal structure with a porous olive‐like morphology, surface areas of 8.4-12.5 m^2/g, and bandgap energies of 2.40-2.48 eV. Surface Bi^(5+), Bi^(3+), V^(5+), and V^(4+) species were present on the S‐doped BiVO(subscript 4-δ) samples. Sulfur doping influenced the surface Bi^(5+)/Bi^(3+), V^(5+)/V^(4+), and Oads/Olatt molar ratios, and the amount of sulfur doped had an important effect on the photocatalytic performance. Under visible light, BiVO(subscript 4-δ)S(subscript 0.08) performed the best in the photodegradation of methylene blue and formaldehyde. A higher surface oxygen species concentration and a lower bandgap energy were responsible for the excellent visible light photocatalytic performance of BiVO(subscript 4-δ)S(subscript 0.08).


Chinese Journal of Catalysis | 2016

Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts

Yuxi Liu; Jiguang Deng; Shaohua Xie; Zhiwei Wang; Hongxing Dai

Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Catalytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high performance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and supported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excellent catalytic performance was due to their high surface areas, high concentration of adsorbed oxygen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and proposed future work for the removal of VOCs.

Collaboration


Dive into the Yuxi Liu's collaboration.

Top Co-Authors

Avatar

Hongxing Dai

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jiguang Deng

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Shaohua Xie

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Lei Zhang

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhenxuan Zhao

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Xingtian Zhao

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jun Yang

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Xinwei Li

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yuan Wang

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Guangsheng Guo

Beijing University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge