Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jihong Dai is active.

Publication


Featured researches published by Jihong Dai.


PLOS ONE | 2013

Dexamethasone Inhibits Repair of Human Airway Epithelial Cells Mediated by Glucocorticoid-Induced Leucine Zipper (GILZ)

Jingyue Liu; Mingxiang Zhang; Chao Niu; Zhengxiu Luo; Jihong Dai; Lijia Wang; Enmei Liu; Zhou Fu

Background Glucocorticoids (GCs) are a first-line treatment for asthma for their anti-inflammatory effects, but they also hinder the repair of airway epithelial injury. The anti-inflammatory protein GC-induced leucine zipper (GILZ) is reported to inhibit the activation of the mitogen-activated protein kinase (MAPK)-extracellular-signal-regulated kinase (ERK) signaling pathway, which promotes the repair of airway epithelial cells around the damaged areas. We investigated whether the inhibition of airway epithelial repair imposed by the GC dexamethasone (DEX) is mediated by GILZ. Methods We tested the effect of DEX on the expressions of GILZ mRNA and GILZ protein and the MAPK-ERK signaling pathway in human airway epithelial cells, via RT-PCR and Western blot. We further evaluated the role of GILZ in mediating the effect of DEX on the MAPK-ERK signaling pathway and in airway epithelium repair by utilizing small-interfering RNAs, MTT, CFSE labeling, wound-healing and cell migration assays. Results DEX increased GILZ mRNA and GILZ protein levels in a human airway epithelial cell line. Furthermore, DEX inhibited the phosphorylation of Raf-1, Mek1/2, Erk1/2 (components of the MAPK-ERK signaling pathway), proliferation and migration. However, the inhibitory effect of DEX was mitigated in cells when the GILZ gene was silenced. Conclusions The inhibition of epithelial injury repair by DEX is mediated in part by activation of GILZ, which suppressed activation of the MAPK-ERK signaling pathway, proliferation and migration. Our study implicates the involvement of DEX in this process, and furthers our understanding of the dual role of GCs.


Scientific Reports | 2017

Therapeutic Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Acute Lung Injury Mice.

Hua Zhu; Yi Xiong; Yunqiu Xia; Rong Zhang; Daiyin Tian; Ting Wang; Jihong Dai; Lijia Wang; Hongbing Yao; Hong Jiang; Ke Yang; Enmei Liu; Yujun Shi; Zhou Fu; Li Gao; Lin Zou

The incidence and mortality of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are still very high, but stem cells show some promise for its treatment. Here we found that intratracheal administration of human umbilical cord-mesenchymal stem cells (UC-MSCs) significantly improved survival and attenuated the lung inflammation in lipopolysaccharide (LPS)-induced ALI mice. We also used the proteins-chip and bioinformatics to analyze interactions between UC-MSCs treatment and immune-response alternations of ALI mice. Then we demonstrated that UC-MSCs could inhibit the inflammatory response of mouse macrophage in ALI mice, as well as enhance its IL-10 expression. We provide data to support the concept that the therapeutic capacity of UC-MSCs for ALI was primarily through paracrine secretion, particularly of prostaglandin-E2 (PGE2). Furthermore, we showed that UC-MSCs might secrete a panel of factors including GM-CSF, IL-6 and IL-13 to ameliorate ALI. Our study suggested that UC-MSCs could protect LPS-induced ALI model by immune regulation and paracrine factors, indicating that UC-MSCs should be a promising strategy for ALI/ARDS.


Clinical & Experimental Allergy | 2016

Vitamin A maintains the airway epithelium in a murine model of asthma by suppressing glucocorticoid‐induced leucine zipper

Chao Niu; N. Liu; Jingyue Liu; Mingxiang Zhang; L. Ying; L. Wang; Daiyin Tian; Jihong Dai; Zhengxiu Luo; Enmei Liu; Lin Zou; Zhou Fu

The effects of glucocorticoids (GCs) on the repair of the airway epithelium in asthma are controversial, and we previously reported that the GC dexamethasone (Dex) inhibits the repair of human airway epithelial cells and that this process is mediated by glucocorticoid‐induced leucine zipper (GILZ) through MAPK‐ERK signaling in vitro. Vitamin A (VA) is involved in the regulation of the MAPK‐ERK pathway but has not been widely supplied during asthma treatment. It is unclear whether VA attenuates the negative regulation of GILZ on the MAPK‐ERK pathway and maintains airway epithelium integrity during asthma treatment.


Cellular Physiology and Biochemistry | 2018

LPS Exposure in Early Life Protects Against Mucus Hypersecretion in Ovalbumin-Induced Asthma by Down-Regulation of the IL-13 and JAK-STAT6 Pathways

Fengxia Ding; Bo Liu; Wenjing Zou; Daiyin Tian; Qubei Li; Jihong Dai; Zhengxiu Luo; Zhou Fu

Background/Aims: Previous studies have shown that lipopolysaccharide (LPS) exposure may have a protective effect on asthma by reducing airway hyper-responsiveness, airway inflammation and serum IgE levels. However, there are few studies investigating the effect of LPS on mucous secretion in asthma. In this study, we evaluate the relationship between LPS pre-treatment in infant mice and airway mucus hypersecretion in an OVA (ovalbumin)-induced asthma model, and further explore the mechanisms behind this effect. Methods: Mice were pre-treated with LPS by intranasal instillation (i.n.) from the 3rd day of life for 10 consecutive days before the OVA-induced asthma model was established. In order to detect mucus secretion, periodic acid-Schiff (PAS) staining was carried out, and the expression of Muc5ac was detected. The IL-13 levels in Bronchoalveolar lavage fluid (BALF) and lung tissue were also detected. In vitro, the expression of Muc5ac mRNA and protein was quantified in IL-13-stimulated 16HBE cells with or without LPS pre-treatment. In addition, proteins in the JAK2/STAT6 pathway, transcription factors (forkhead box transcription factor A2 (FOXA2), activation protein-1(AP-1), NF-κB), and the levels of reactive oxygen species (ROS) were also measured in vivo and in vitro. Results: LPS pre-treatment reduced mucus secretion, as demonstrated by decreased PAS staining and muc5ac expression. Further exploration of the underlying mechanisms of this phenomenon revealed that LPS pre-treatment decreased the production of IL-13, IL-13 induced ROS synthesis was reduced, and the JAK2/STAT6 pathway was inhibited. Decreased stat6 increased transcription factor FOXA2, and the relatively increased FOXA2 further decreased the level of Muc5ac and mucous hypersecretion in OVA-induced asthma. Conclusions: LPS pre-treatment ameliorated mucus hypersecretion in an OVA-induced asthma model by inhibition of IL-13 production and by further inhibiting the JAK2/STAT6 pathway and ROS activity, and up-regulating expression of FOXA2.


Journal of Asthma | 2017

Characteristics of lower airway inflammatory changes in the minimal persistent inflammation of allergic rhinitis in mice

Jie Xu; Li Gao; Hongbing Yao; Rong Zhang; Na Liu; Lijia Wang; Enmei Liu; Jihong Dai; Zhou Fu

ABSTRACT Objective: This study aims to establish an experimental mouse model of minimal persistent inflammation (MPI), observe the features of inflammation and hyper-responsiveness of the upper/lower airways, and explore the relationship between inflammation and hyper-responsiveness in the upper/lower airways. Methods: Sixty-four female BALB/c mice were randomly divided into four groups: allergic rhinitis (AR) group as positive control, MPI group, negative control group and blank control group. Mice were given high and low-concentrated ovalbumin solution after basic and intensive sensitization to establish AR model and MPI model. Nasal mucosa and lung tissues were stained to observe eosinophil infiltration, goblet cell hyperplasia, and expression of intercellular adhesion molecule 1 (ICAM-1). Airway hyper-responsiveness was assessed. Levels of specific immunoglobulin E (sIgE), interleukin (IL)-4 and IL-5 in peripheral blood, nasal lavage fluid (NLF), and bronchoalveolar lavage fluid (BALF) were detected by Enzyme-linked immunosorbent assay. Results: The eosinophil infiltration and expression of ICAM-1 on nasal mucosa and in lung tissues in the AR and MPI groups were significantly elevated compared to control groups. Goblet cells count increased only in the nasal mucosa and not in lung tissues. Eosinophil and neutrophil count of NLF and BALF in the AR and MPI groups increased significantly compared to control groups. Level of IL-4 did not increase significantly, but sIgE and IL-5 did. Conclusions: Mice in the MPI status exhibits lower airway inflammation and hyper-responsiveness with increase in eosinophil count, goblet cells, ICAM-1, IL-4, and IL-5. These results provide further evidence for the importance of MPI of AR in lower airway diseases.


Molecular Biology Reports | 2011

Investigation of the interaction between CREB-binding protein and STAT4/STAT6

Mingxiang Zhang; Zhou Fu; Daiyin Tian; Enmei Liu; Jihong Dai; Lijia Wang

Coactivator CBP (CREB-binding protein) has been implicated in the regulation of transcription for all signal transducer and activator of transcription factors (STATs); however, the mechanism remains unclear. Using yeast two-hybrid screening and immunoprecipitation techniques, we investigated the direct interaction of CBP with STAT4 and STAT6. The full-length CBP and five fragments of CBP (residues 1–436, 529–1200, 1–697, 967–1574 and 1678–2175) were constructed using pGBKT7 vectors, while STAT4, STAT6 and N-terminal deleted STAT4 were constructed using pGADT7 vectors. It was found that STAT4, but not STAT6, interacted directly with the 1678–2175 fragment of CBP containing the ZZ, TAZ2 and SID domain. The N-terminal of STAT4 plays an important role in this interaction since N-terminal deleted STAT4 failed to bind to any CBP fragment. The results were confirmed by immunoprecipitation using HA-tagged STAT4 or STAT6 and c-Myc tagged CBP. This work will contribute to our understanding of the mechanisms of Th cytokine imbalance.


Journal of Asthma | 2018

Enhanced pause correlates with airway neutrophils and airway-epithelial injury in in asthmatic mice treated with dexamethasone

Chao Niu; Ting Wang; Wenjing Zou; Hu Jie; Linyan Ying; Mingxiang Zhang; Jingyue Liu; Daiyin Tian; Jihong Dai; Zhengxiu Luo; Enmei Liu; Lin Zou; Yi Xiong; Zhou Fu

Abstract Objective: To investigate the correlations among airway inflammation, airway epithelial injury and airway hyperresponsiveness (AHR) in asthmatic mice treated with dexamethasone. Methods: Female BALB/c mice were sensitized with intraperitoneal and hypodermic injections of ovalbumin (OVA) and aluminum on days 0, 7 and 14, challenged with OVA starting on day 21 for 10 days, and treated with dexamethasone via intraperitoneal injection starting on day 28 for 3 days. Female C57BL/6 mice were treated intranasally with house dust mite (HDM) on days 1 and 14, challenged intranasally with HDM on days 21, 23, 25, 27 and 29, and treated with sivelestat (a selective neutrophil elastase inhibitor) via intraperitoneal injection after each challenge. Following the final challenge, enhanced pause (Penh) and differential cell counts in the broncho-alveolar lavage fluid were measured and the correlations were analyzed. Results: Compared with OVA-challenged BALB/c mice, the counterpart mice treated with dexamethasone showed reduced Penh and shedding of airway epithelial cells. In addition, we found that Penh 50 (an indicator of AHR) had positive correlations with airway neutrophils and shedding of airway epithelial cells, but no correlation with eosinophils, lymphocytes or macrophages. Moreover, shedding of airway epithelial cells had positive correlations with airway neutrophils, but no correlation with eosinophils, lymphocytes or macrophages. Further, sivelestat decreased Penh 50 and shed airway-epithelial cells in HDM-challenged C57BL/6 mice. Conclusions: Collectively, our findings suggest that airway neutrophils and excessive shedding of airway epithelial cells, but not eosinophils, lymphocytes or macrophages, may be involved in AHR in asthmatic mice treated with dexamethasone.


Biomedicine & Pharmacotherapy | 2018

KIF3A knockdown sensitizes bronchial epithelia to apoptosis and aggravates airway inflammation in asthma

Gang Geng; Ying Du; Jihong Dai; Daiyin Tian; Yunqiu Xia; Zhou Fu

BACKGROUND KIF3A expression was decreased in asthmatic child patients and animal. Impaired KIF3A expression resulted in increased Th2 inflammation in mice and apoptosis in renal tubular epithelium and photoreceptor cells. This work aimed to investigate the role of KIF3A in epithelium apoptosis and bronchial inflammation in asthma. METHODS After establishment of ovalbumin induced asthma, the mice were infected with KIF3A adenovirus through nasal cavity inhalation. KIF3A expression and apoptosis in epithelia of nasal mucosa and bronchia were determined using qRT-PCR, western blotting, immunohistochemistry and TUNEL staining. The mRNA expression of COX-2, IL-4, IL-5, IL-13, IL-6, IL-10 and TNF-α was also measured. In vitro, human bronchial epithelial cell line 16HBE 14o- was stimulated with IL-4, IL-13 and TNF-α, accompanied by KIF3A knockdown or overexpression using siRNA or KIF3A adenovirus respectively. Apoptosis, mRNA expression of CCL17, CCL26, IL-5 and IL-8, and protein expression of COX-2 and β-catenin were determined using flow cytometry, qRT-PCR and western blotting. RESULTS KIF3A expression was reduced in epithelia of nasal mucosa and bronchia of asthmatic mice, and overexpression of KIF3A ameliorated epithelial cell apoptosis and bronchial inflammation in asthmatic mice. In vitro, KIF3A knockdown significantly promoted epithelium apoptosis, facilitated the transcription of CCL17, CCL26, IL-5 and IL-8, and increased the protein levels of COX-2 and β-catenin translocation, whereas overexpression of KIF3A exhibited the opposite effect. CONCLUSION KIF3A plays an important role in epithelium apoptosis and bronchial inflammation in asthma, and may be a potential target for asthma treatment.


Biochemical and Biophysical Research Communications | 2018

Human umbilical cord-derived mesenchymal stem cells protect from hyperoxic lung injury by ameliorating aberrant elastin remodeling in the lung of O2-exposed newborn rat

Chen Hou; Danyi Peng; Li Gao; Daiyin Tian; Jihong Dai; Zhengxiu Luo; Enmei Liu; Hong Chen; Lin Zou; Zhou Fu

The incidence and mortality rates of bronchopulmonary dysplasia (BPD) remain very high. Therefore, novel therapies are imminently needed to improve the outcome of this disease. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) show promising therapeutic effects on oxygen-induced model of BPD. In our experiment, UC-MSCs were intratracheally delivered into the newborn rats exposed to hyperoxia, a well-established BPD model. This study demonstrated that UC-MSCs reduce elastin expression stimulated by 90% O2 in human lung fibroblasts-a (HLF-a), and inhibit HLF-a transdifferentiation into myofibroblasts. In addition, the therapeutic effects of UC-MSCs in neonatal rats with BPD, UC-MSCs could inhibit lung elastase activity and reduce aberrant elastin expression and deposition in the lung of BPD rats. Overall, this study suggested that UC-MSCs could ameliorate aberrant elastin expression in the lung of hyperoxia-induced BPD model which may be associated with suppressing increased TGFβ1 activation.


Genes and Diseases | 2017

Deletion of SMARCA4 impairs alveolar epithelial type II cells proliferation and aggravates pulmonary fibrosis in mice

Danyi Peng; Daozhu Si; Rong Zhang; Jiang Liu; Hao Gou; Yunqiu Xia; Daiyin Tian; Jihong Dai; Ke Yang; Enmei Liu; Yujun Shi; Q. Richard Lu; Lin Zou; Zhou Fu

Alveolar epithelial cells (AECs) injury and failed reconstitution of the AECs barrier are both integral to alveolar flooding and subsequent pulmonary fibrosis (PF). Nevertheless, the exact mechanisms regulating the regeneration of AECs post-injury still remain unclear. SMARCA4 is a part of the large ATP-dependent chromatin remodelling complex SWI/SNF, which is essential for kidney and heart fibrosis. We investigates SMARCA4 function in lung fibrosis by establishing PF mice model with bleomycin firstly and found that the expression of SMARCA4 was mainly enhanced in alveolar type II (ATII) cells. Moreover, we established an alveolar epithelium-specific SMARCA4-deleted SP-C-rtTA/(tetO)7-Cre/SMARCA4f/f mice (SOSM4Δ/Δ) model, as well as a new SMARCA4-deleted alveolar type II (ATII)-like mle-12 cell line. We found that the bleomycin-induced PF was more aggressive in SOSM4Δ/Δ mice. Also, the proliferation of ATII cells was decreased with the loss of SMARCA4 in vivo and in vitro. In addition, we observed increased proliferation of ATII cells accompanied by abnormally high expression of SMARCA4 in human PF lung sections. These data uncovered the indispensable role of SMARCA4 in the proliferation of ATII cells, which might affect the progression of PF.

Collaboration


Dive into the Jihong Dai's collaboration.

Top Co-Authors

Avatar

Zhou Fu

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar

Enmei Liu

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar

Daiyin Tian

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhengxiu Luo

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar

Lin Zou

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar

Chao Niu

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar

Lijia Wang

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar

Mingxiang Zhang

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar

Jingyue Liu

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar

Li Gao

Chongqing Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge