Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jingyue Liu is active.

Publication


Featured researches published by Jingyue Liu.


Nature Chemistry | 2011

Single-atom catalysis of CO oxidation using Pt1/FeOx.

Botao Qiao; Aiqin Wang; Xiaofeng Yang; Lawrence F. Allard; Zheng Jiang; Yi-Tao Cui; Jingyue Liu; Jun Li; Tao Zhang

Platinum-based heterogeneous catalysts are critical to many important commercial chemical processes, but their efficiency is extremely low on a per metal atom basis, because only the surface active-site atoms are used. Catalysts with single-atom dispersions are thus highly desirable to maximize atom efficiency, but making them is challenging. Here we report the synthesis of a single-atom catalyst that consists of only isolated single Pt atoms anchored to the surfaces of iron oxide nanocrystallites. This single-atom catalyst has extremely high atom efficiency and shows excellent stability and high activity for both CO oxidation and preferential oxidation of CO in H2. Density functional theory calculations show that the high catalytic activity correlates with the partially vacant 5d orbitals of the positively charged, high-valent Pt atoms, which help to reduce both the CO adsorption energy and the activation barriers for CO oxidation.


Accounts of Chemical Research | 2013

Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis

Xiaofeng Yang; Aiqin Wang; Botao Qiao; Jun Li; Jingyue Liu; Tao Zhang

Supported metal nanostructures are the most widely used type of heterogeneous catalyst in industrial processes. The size of metal particles is a key factor in determining the performance of such catalysts. In particular, because low-coordinated metal atoms often function as the catalytically active sites, the specific activity per metal atom usually increases with decreasing size of the metal particles. However, the surface free energy of metals increases significantly with decreasing particle size, promoting aggregation of small clusters. Using an appropriate support material that strongly interacts with the metal species prevents this aggregation, creating stable, finely dispersed metal clusters with a high catalytic activity, an approach industry has used for a long time. Nevertheless, practical supported metal catalysts are inhomogeneous and usually consist of a mixture of sizes from nanoparticles to subnanometer clusters. Such heterogeneity not only reduces the metal atom efficiency but also frequently leads to undesired side reactions. It also makes it extremely difficult, if not impossible, to uniquely identify and control the active sites of interest. The ultimate small-size limit for metal particles is the single-atom catalyst (SAC), which contains isolated metal atoms singly dispersed on supports. SACs maximize the efficiency of metal atom use, which is particularly important for supported noble metal catalysts. Moreover, with well-defined and uniform single-atom dispersion, SACs offer great potential for achieving high activity and selectivity. In this Account, we highlight recent advances in preparation, characterization, and catalytic performance of SACs, with a focus on single atoms anchored to metal oxides, metal surfaces, and graphene. We discuss experimental and theoretical studies for a variety of reactions, including oxidation, water gas shift, and hydrogenation. We describe advances in understanding the spatial arrangements and electronic properties of single atoms, as well as their interactions with the support. Single metal atoms on support surfaces provide a unique opportunity to tune active sites and optimize the activity, selectivity, and stability of heterogeneous catalysts, offering the potential for applications in a variety of industrial chemical reactions.


Science | 2015

Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets

Lei Zhang; Luke T. Roling; Xue Wang; Madeline Vara; Miaofang Chi; Jingyue Liu; Sang-Il Choi; Jinho Park; Jeffrey A. Herron; Zhaoxiong Xie; Manos Mavrikakis; Younan Xia

Etching platinum nanocage catalysts Although platinum is an excellent catalyst for the oxygen reduction reaction that occurs in fuel cells, its scarcity continues to drive efforts to improve its utilization. Zhang et al. made nanocages of platinum by coating palladium nanocrystals with only a few layers of platinum and then etching away the palladium core (see the Perspective by Strasser). Platinum nanocages made using nanoscale octahedra and cubes of palladium displayed different catalytic activity for the oxygen reduction reaction. Science, this issue p. 412; see also p. 379 Nanocage electrocatalysts can increase the utilization of platinum and improve activity by controlling surface structure. [Also see Perspective by Strasser] A cost-effective catalyst should have a high dispersion of the active atoms, together with a controllable surface structure for the optimization of activity, selectivity, or both. We fabricated nanocages by depositing a few atomic layers of platinum (Pt) as conformal shells on palladium (Pd) nanocrystals with well-defined facets and then etching away the Pd templates. Density functional theory calculations suggest that the etching is initiated via a mechanism that involves the formation of vacancies through the removal of Pd atoms incorporated into the outermost layer during the deposition of Pt. With the use of Pd nanoscale cubes and octahedra as templates, we obtained Pt cubic and octahedral nanocages enclosed by {100} and {111} facets, respectively, which exhibited distinctive catalytic activities toward oxygen reduction.


Journal of the American Chemical Society | 2013

Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction

Jian Lin; Aiqin Wang; Botao Qiao; Xiaoyan Liu; Xiaofeng Yang; Xiaodong Wang; Jinxia Liang; Jun Li; Jingyue Liu; Tao Zhang

High specific activity and cost effectiveness of single-atom catalysts hold practical value for water gas shift (WGS) reaction toward hydrogen energy. We reported the preparation and characterization of Ir single atoms supported on FeO(x) (Ir1/FeO(x)) catalysts, the activity of which is 1 order of magnitude higher than its cluster or nanoparticle counterparts and is even higher than those of the most active Au- or Pt-based catalysts. Extensive studies reveal that the single atoms accounted for ∼70% of the total activity of catalysts containing single atoms, subnano clusters, and nanoparticles, thus serving as the most important active sites. The Ir single atoms seem to greatly enhance the reducibility of the FeO(x) support and generation of oxygen vacancies, leading to the excellent performance of the Ir1/FeO(x) single-atom catalyst. The results have broad implications on designing supported metal catalysts with better performance and lower cost.


Nature Communications | 2014

FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes

Haisheng Wei; Xiaoyan Liu; Aiqin Wang; Leilei Zhang; Botao Qiao; Xiaofeng Yang; Yanqiang Huang; Shu Miao; Jingyue Liu; Tao Zhang

The catalytic hydrogenation of nitroarenes is an environmentally benign technology for the production of anilines, which are key intermediates for manufacturing agrochemicals, pharmaceuticals and dyes. Most of the precious metal catalysts, however, suffer from low chemoselectivity when one or more reducible groups are present in a nitroarene molecule. Herein we report FeOx-supported platinum single-atom and pseudo-single-atom structures as highly active, chemoselective and reusable catalysts for hydrogenation of a variety of substituted nitroarenes. For hydrogenation of 3-nitrostyrene, the catalyst yields a TOF of ~1,500 h(-1), 20-fold higher than the best result reported in literature, and a selectivity to 3-aminostyrene close to 99%, the best ever achieved over platinum group metals. The superior performance can be attributed to the presence of positively charged platinum centres and the absence of Pt-Pt metallic bonding, both of which favour the preferential adsorption of nitro groups.


Nature Communications | 2015

Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction

Xue Wang; Sang-Il Choi; Luke T. Roling; Ming Luo; Cheng Ma; Lei Zhang; Miaofang Chi; Jingyue Liu; Zhaoxiong Xie; Jeffrey A. Herron; Manos Mavrikakis; Younan Xia

Conformal deposition of platinum as ultrathin shells on facet-controlled palladium nanocrystals offers a great opportunity to enhance the catalytic performance while reducing its loading. Here we report such a system based on palladium icosahedra. Owing to lateral confinement imposed by twin boundaries and thus vertical relaxation only, the platinum overlayers evolve into a corrugated structure under compressive strain. For the core-shell nanocrystals with an average of 2.7 platinum overlayers, their specific and platinum mass activities towards oxygen reduction are enhanced by eight- and sevenfold, respectively, relative to a commercial catalyst. Density functional theory calculations indicate that the enhancement can be attributed to the weakened binding of hydroxyl to the compressed platinum surface supported on palladium. After 10,000 testing cycles, the mass activity of the core-shell nanocrystals is still four times higher than the commercial catalyst. These results demonstrate an effective approach to the development of electrocatalysts with greatly enhanced activity and durability.


ACS Nano | 2011

Facile Synthesis of Pd–Pt Alloy Nanocages and Their Enhanced Performance for Preferential Oxidation of CO in Excess Hydrogen

Hui Zhang; Mingshang Jin; Hongyang Liu; Jinguo Wang; Moon J. Kim; Deren Yang; Zhaoxiong Xie; Jingyue Liu; Younan Xia

This article describes a new method for the facile synthesis of Pd-Pt alloy nanocages with hollow interiors and porous walls by using Pd nanocubes as sacrificial templates. Differing from our previous work (Zhang, H.; Jin, M. S.; Wang, J. G.; Li, W. Y.; Camargo, P. H. C.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Xia, Y. Synthesis of Pd-Pt Bimetallic Nanocrystals with a Concave Structure through a Bromide-Induced Galvanic Replacement Reaction. J. Am. Chem. Soc.2011, 133, 6078-6079), we complemented the galvanic replacement (between Pd nanocubes and PtCl(4)(2-)) with a coreduction process (for PdCl(4)(2-) from the galvanic reaction and PtCl(4)(2-) from the feeding) to generate Pd-Pt alloy nanocages in one step. We found that the rate of galvanic replacement (as determined by the concentrations of Br(-) and PtCl(4)(2-) and temperature) and the rates of coreduction (as determined by the type of reductant and temperature) played important roles in controlling the morphology of resultant Pd-Pt alloy nanocages. The Pd-Pt nanocages exhibited both enhanced activity and selectivity for the preferential oxidation (PROX) of CO in excess hydrogen than those of Pd nanocubes and the commercial Pt/C thanks to the alloy composition and hollow structure. In addition, as the sizes of the Pd-Pt nanocages decreased, they exhibited higher CO conversion rates and lower maximum conversion temperatures due to the increase in specific surface area.


Journal of the American Chemical Society | 2012

Stabilized Gold Nanoparticles on Ceria Nanorods by Strong Interfacial Anchoring

Na Ta; Jingyue Liu; Santhosh Chenna; Peter A. Crozier; Yong Li; Aling Chen; Wenjie Shen

Au/CeO(2) catalysts are highly active for low-temperature CO oxidation and water-gas shift reaction, but they deactivate rapidly because of sintering of gold nanoparticles, linked to the collapse or restructuring of the gold-ceria interfacial perimeters. To date, a detailed atomic-level insight into the restructuring of the active gold-ceria interfaces is still lacking. Here, we report that gold particles of 2-4 nm size, strongly anchored onto rod-shaped CeO(2), are not only highly active but also distinctively stable under realistic reaction conditions. Environmental transmission electron microscopy analyses identified that the gold nanoparticles, in response to alternating oxidizing and reducing atmospheres, changed their shapes but did not sinter at temperatures up to 573 K. This finding offers a new strategy to stabilize gold nanoparticles on ceria by engineering the gold-ceria interfacial structure, which could be extended to other oxide-supported metal nanocatalysts.


Journal of the American Chemical Society | 2014

Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity.

Yin Yang; Jingyue Liu; Zheng Wen Fu; Dong Qin

We report a robust synthesis of Ag@Au core-shell nanocubes by directly depositing Au atoms on the surfaces of Ag nanocubes as conformal, ultrathin shells. Our success relies on the introduction of a strong reducing agent to compete with and thereby block the galvanic replacement between Ag and HAuCl4. An ultrathin Au shell of 0.6 nm thick was able to protect the Ag in the core in an oxidative environment. Significantly, the core-shell nanocubes exhibited surface plasmonic properties essentially identical to those of the original Ag nanocubes, while the SERS activity showed a 5.4-fold further enhancement owing to an improvement in chemical enhancement. The combination of excellent SERS activity and chemical stability may enable a variety of new applications.


Journal of the American Chemical Society | 2015

Pd@Pt Core–Shell Concave Decahedra: A Class of Catalysts for the Oxygen Reduction Reaction with Enhanced Activity and Durability

Xue Wang; Madeline Vara; Ming Luo; Hongwen Huang; Aleksey Ruditskiy; Jinho Park; Shixiong Bao; Jingyue Liu; Jane Y. Howe; Miaofang Chi; Zhaoxiong Xie; Younan Xia

We report a facile synthesis of multiply twinned Pd@Pt core-shell concave decahedra by controlling the deposition of Pt on preformed Pd decahedral seeds. The Pt atoms are initially deposited on the vertices of a decahedral seed, followed by surface diffusion to other regions along the edges/ridges and then across the faces. Different from the coating of a Pd icosahedral seed, the Pt atoms prefer to stay at the vertices and edges/ridges of a decahedral seed even when the deposition is conducted at 200 °C, naturally generating a core-shell structure covered by concave facets. The nonuniformity in the Pt coating can be attributed to the presence of twin boundaries at the vertices, as well as the {100} facets and twin defects along the edges/ridges of a decahedron, effectively trapping the Pt adatoms at these high-energy sites. As compared to a commercial Pt/C catalyst, the Pd@Pt concave decahedra show substantial enhancement in both catalytic activity and durability toward the oxygen reduction reaction (ORR). For the concave decahedra with 29.6% Pt by weight, their specific (1.66 mA/cm(2)Pt) and mass (1.60 A/mgPt) ORR activities are enhanced by 4.4 and 6.6 times relative to those of the Pt/C catalyst (0.36 mA/cm(2)Pt and 0.32 A/mgPt, respectively). After 10,000 cycles of accelerated durability test, the concave decahedra still exhibit a mass activity of 0.69 A/mgPt, more than twice that of the pristine Pt/C catalyst.

Collaboration


Dive into the Jingyue Liu's collaboration.

Top Co-Authors

Avatar

Botao Qiao

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Tao Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Younan Xia

The Wallace H. Coulter Department of Biomedical Engineering

View shared research outputs
Top Co-Authors

Avatar

Aiqin Wang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Lawrence F. Allard

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jia Xu

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Jian Lin

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Lin Li

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge