Jihong Qu
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jihong Qu.
Circulation Research | 2004
Irina A. Potapova; Alexei N. Plotnikov; Zhongju Lu; Peter Danilo; Virginijus Valiunas; Jihong Qu; Sergey V. Doronin; Joan Zuckerman; Iryna N. Shlapakova; Junyuan Gao; Zongming Pan; Alan J. Herron; Richard B. Robinson; Peter R. Brink; Michael R. Rosen; Ira S. Cohen
Abstract— We tested the ability of human mesenchymal stem cells (hMSCs) to deliver a biological pacemaker to the heart. hMSCs transfected with a cardiac pacemaker gene, mHCN2, by electroporation expressed high levels of Cs+-sensitive current (31.1±3.8 pA/pF at −150 mV) activating in the diastolic potential range with reversal potential of −37.5±1.0 mV, confirming the expressed current as If-like. The expressed current responded to isoproterenol with an 11-mV positive shift in activation. Acetylcholine had no direct effect, but in the presence of isoproterenol, shifted activation 15 mV negative. Transfected hMSCs influenced beating rate in vitro when plated onto a localized region of a coverslip and overlaid with neonatal rat ventricular myocytes. The coculture beating rate was 93±16 bpm when hMSCs were transfected with control plasmid (expressing only EGFP) and 161±4 bpm when hMSCs were expressing both EGFP+mHCN2 (P <0.05). We next injected 10 6 hMSCs transfected with either control plasmid or mHCN2 gene construct subepicardially in the canine left ventricular wall in situ. During sinus arrest, all control (EGFP) hearts had spontaneous rhythms (45±1 bpm, 2 of right-sided origin and 2 of left). In the EGFP+mHCN2 group, 5 of 6 animals developed spontaneous rhythms of left-sided origin (rate=61±5 bpm; P <0.05). Moreover, immunostaining of the injected regions demonstrated the presence of hMSCs forming gap junctions with adjacent myocytes. These findings demonstrate that genetically modified hMSCs can express functional HCN2 channels in vitro and in vivo, mimicking overexpression of HCN2 genes in cardiac myocytes, and represent a novel delivery system for pacemaker genes into the heart or other electrical syncytia.
Circulation | 2003
Jihong Qu; Alexei N. Plotnikov; Peter Danilo; Iryna N. Shlapakova; Ira S. Cohen; Richard B. Robinson; Michael R. Rosen
Background—We hypothesized that localized overexpression of the hyperpolarization-activated, cyclic nucleotide-gated (HCN2) pacemaker current isoform in canine left atrium (LA) would constitute a novel biological pacemaker. Methods and Results—Adenoviral constructs of mouse HCN2 and green fluorescent protein (GFP) or GFP alone were injected into LA, terminal studies performed 3 to 4 days later, hearts removed, and myocytes examined for native and expressed pacemaker current (If). Spontaneous LA rhythms occurred after vagal stimulation-induced sinus arrest in 4 of 4 HCN2+GFP dogs and 0 of 3 GFP dogs (P <0.05). Native If in nonexpressed atrial myocytes was 7±4 pA at −130 mV (n=5), whereas HCN2+GFP LA had expressed pacemaker current (IHCN2) of 3823±713 pA at −125 mV (n=10) and 768±365 pA at −85 mV. Conclusions—HCN2 overexpression provides an If-based pacemaker sufficient to drive the heart when injected into a localized region of atrium, offering a promising gene therapy for pacemaker disease.
Circulation | 2004
Alexei N. Plotnikov; Eugene A. Sosunov; Jihong Qu; Iryna N. Shlapakova; Evgeny P. Anyukhovsky; Lili Liu; Michiel J. Janse; Peter R. Brink; Ira S. Cohen; Richard B. Robinson; Peter Danilo; Michael R. Rosen
Background—We hypothesized that administration of the HCN2 gene to the left bundle-branch (LBB) system of intact dogs would provide pacemaker function in the physiological range of heart rates. Methods and Results—An adenoviral construct incorporating HCN2 and green fluorescent protein (GFP) as a marker was injected via catheter under fluoroscopic control into the posterior division of the LBB. Controls were injected with an adenoviral construct of GFP alone or saline. Animals were monitored electrocardiographically for up to 7 days after surgery, at which time they were anesthetized and subjected to vagal stimulation to permit emergence of escape pacemakers. Hearts were then removed and injection sites visually identified and removed for microelectrode study of action potentials, patch clamp studies of pacemaker current, and/or immunohistochemical studies of HCN2. For 48 hours postoperatively, 7 of 7 animals subjected to 24-hour ECG monitoring showed multiple ventricular premature depolarizations and/or ventricular tachycardia attributable to injection-induced injury. Thereafter, sinus rhythm prevailed. During vagal stimulation, HCN2-injected dogs showed rhythms originating from the left ventricle, the rate of which was significantly more rapid than in the controls. Excised posterior divisions of the LBB from HCN2-injected animals manifested automatic rates significantly greater than the controls. Isolated tissues showed immunohistochemical and biophysical evidence of overexpressed HCN2. Conclusions—A gene-therapy approach for induction of biological pacemaker activity within the LBB system provides ventricular escape rhythms that have physiologically acceptable rates. Long-term stability and feasibility of the approach remain to be tested.
Circulation | 2006
Annalisa Bucchi; Alexei N. Plotnikov; Iryna N. Shlapakova; Peter Danilo; Yelena Kryukova; Jihong Qu; Zhongju Lu; Huilin Liu; Zongming Pan; Irina A. Potapova; Bruce Ken Knight; Steven D. Girouard; Ira S. Cohen; Peter R. Brink; Richard B. Robinson; Michael R. Rosen
Background— Biological pacemakers (BPM) implanted in canine left bundle branch function competitively with electronic pacemakers (EPM). We hypothesized that BPM engineered with the use of mE324A mutant murine HCN2 (mHCN2) genes would improve function over mHCN2 and that BPM/EPM tandems confer advantage over either approach alone. Methods and Results— In cultured neonatal rat myocytes, activation midpoint was −46.9 mV in mE324A versus −66.1 mV in mHCN2 (P<0.05). mE324A manifested a positive shift of voltage dependence of gating kinetics of activation and deactivation compared with mHCN2 (P<0.05) in myocytes as well as Xenopus oocytes. In intact dogs in complete atrioventricular block, saline (control), mHCN2, or mE324A virus was injected into left bundle branch, and EPM were implanted (VVI 45 bpm). Twenty-four–hour ECGs were monitored for 14 days. With EPM discontinued, there was no difference in duration of overdrive suppression among groups. However, basal heart rates in controls were less than those in mHCN2, which did not differ from those in E324A (45 versus 57 versus 53 bpm; P<0.05). When spontaneous rate fell below 45 bpm, EPM intervened at that rate, triggering 83% of beats in control, contrasting (P<0.05) with 26% (mHCN2) and 36% (mE324A). On day 14, epinephrine (1 &mgr;g/kg per minute IV) induced a 50% heart rate increase in all mE324A, one third of mHCN2, and one fifth of control (P<0.05 mE324A versus control or mHCN2). Conclusions— mE324A induces faster, more positive pacemaker current activation than mHCN2 and stable, catecholamine-sensitive rhythms in situ that compete with EPM comparably but more catecholamine responsively than mHCN2. BPM/EPM tandems function reliably, reduce the number of EPM beats, and confer sympathetic responsiveness to the tandem.
Journal of Biological Chemistry | 2004
Jihong Qu; Yelena Kryukova; Irina A. Potapova; Sergey V. Doronin; Michael Larsen; Ganga Krishnamurthy; Ira S. Cohen; Richard B. Robinson
MinK-related protein (MiRP1 or KCNE2) interacts with the hyperpolarization-activated, cyclic nucleotidegated (HCN) family of pacemaker channels to alter channel gating in heterologous expression systems. Given the high expression levels of MiRP1 and HCN subunits in the cardiac sinoatrial node and the contribution of pacemaker channel function to impulse initiation in that tissue, such an interaction could be of considerable physiological significance. However, the functional evidence for MiRP1/HCN interactions in heterologous expression studies has been accompanied by inconsistencies between studies in terms of the specific effects on channel function. To evaluate the effect of MiRP1 on HCN expression and function in a physiological context, we used an adenovirus approach to overexpress a hemagglutinin (HA)-tagged MiRP1 (HAMiRP1) and HCN2 in neonatal rat ventricular myocytes, a cell type that expresses both MiRP1 and HCN2 message at low levels. HA-MiRP1 co-expression with HCN2 resulted in a 4-fold increase in maximal conductance of pacemaker currents compared with HCN2 expression alone. HCN2 activation and deactivation kinetics also changed, being significantly more rapid for voltages between –60 and –95 mV when HA-MiRP1 was co-expressed with HCN2. However, the voltage dependence of activation was not affected. Co-immunoprecipitation experiments demonstrated that expressed HA-MiRP1 and HCN2, as well as endogenous MiRP1 and HCN2, co-assemble in ventricular myocytes. The results indicate that MiRP1 acts as a β subunit for HCN2 pacemaker channel subunits and alters channel gating at physiologically relevant voltages in cardiac cells.
Circulation Research | 2003
Lev Protas; Andrea Barbuti; Jihong Qu; Vitalyi O. Rybin; Richard D. Palmiter; Susan F. Steinberg; Richard B. Robinson
Abstract— Cell culture studies demonstrate an increase in cardiac L-type Ca2+ current (ICa,L) density on sympathetic innervation in vitro and suggest the effect depends on neurally released neuropeptide Y (NPY). To determine if a similar mechanism contributes to the postnatal increase in ICa,L in vivo, we prepared isolated ventricular myocytes from neonatal and adult mice with targeted deletion of the NPY gene (Npy−/−) and matched controls (Npy+/+). Whole-cell voltage clamp demonstrates ICa,L density increases postnatally in Npy+/+ (by 56%), but is unchanged in Npy−/−. Both ICa,L density and action potential duration are significantly greater in adult Npy+/+ than Npy−/− myocytes, whereas ICa,L density is equivalent in neonatal Npy+/+ and Npy−/− myocytes. These data indicate NPY does not influence ICa,L prenatally, but the postnatal increase in ICa,L density is entirely NPY-dependent. In contrast, there is a similar postnatal negative voltage shift in the I-V relation in Npy+/+ and Npy−/−, indicating NPY does not influence the developmental change in ICa,L voltage-dependence. Immunoblot analyses and measurements of maximally activated ICa,L (in presence of forskolin or BayK 8644) show that the differences in current density between Npy+/+ and Npy−/− cannot be attributed to altered Ca2+ channel &agr;1C subunit protein expression. Rather, these results suggest that the in vivo NPY-dependent postnatal increase in ICa,L density in cardiac myocytes results from regulation ICa,L properties by NPY.
The Journal of Physiology | 2000
Jihong Qu; Ira S. Cohen; Richard B. Robinson
1 Pacemaker current (If) exists in both neonatal and adult ventricles, but activates at more negative voltages in the adult. This study uses whole‐cell patch clamp to investigate the factors that may contribute to the maturational shift of If, comparing neonatal rat ventricular myocytes that were cultured for 4‐6 days either alone, in co‐culture with sympathetic nerves, or with neurotransmitters chronically present in culture. 2 I f recorded from nerve‐muscle co‐cultures had a significantly more negative and shallower activation‐voltage relation than that from control muscle cultures, which was reflected in the midpoint potential (V50) and slope factor (K) of activation. This effect of innervation was prevented by the sustained presence in the culture of the α1‐adrenergic antagonist prazosin (Pz) at 10−7 M. 3 In parallel experiments, myocytes treated with noradrenaline (NA) at 10−7 M or neuropeptide Y (NPY) at 10−7 M during culture had the same If activation as control cells, but cells treated with NA and NPY together had a significantly more negative and shallower activation curve. Maximum conductance and reversal potential were unchanged. 4 The effect of chronic exposure to NA + NPY was prevented by the sustained presence of either Pz or the NPY Y2 selective antagonist T4‐[NPY(33‐36)]4 (3.5 × 10−7 M) in the culture, indicating a requirement for both α1‐adrenergic and NPY Y2 activation. 5 Substituting NA with the α1A‐adrenergic selective agonist A61603 (5‐10 × 10−9 M), in the presence of NPY, did not alter If, suggesting the involvement of α1B‐ rather than α1A‐adrenoceptors. Further, sequential exposure to NPY followed by NA was effective in reproducing the action of chronic simultaneous exposure to these agonists, but sequential exposure to NA followed by NPY was ineffective. 6 The results are consistent with past studies indicating that NPY affects the functional expression of the α1B‐adrenergic cascade and suggest that sympathetic innervation induces a negative shift of If in ventricle via a combined action at α1B‐adrenergic and NPY Y2 receptors. This effect of innervation probably contributes to the developmental maturation of If activation.
Journal of Endocrinology | 2009
Yi Zhang; Yunfeng Liu; Jihong Qu; Alexandre B. Hardy; Nina Zhang; Jingyu Diao; Paul J Strijbos; Robert G. Tsushima; Richard B Robinson; Herbert Y. Gaisano; Qinghua Wang; Michael B. Wheeler
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate pacemaker activity in some cardiac cells and neurons. In the present study, we have identified the presence of HCN channels in pancreatic beta-cells. We then examined the functional characterization of these channels in beta-cells via modulating HCN channel activity genetically and pharmacologically. Voltage-clamp experiments showed that over-expression of HCN2 in rat beta-cells significantly increased HCN current (I(h)), whereas expression of dominant-negative HCN2 (HCN2-AYA) completely suppressed endogenous I(h). Compared to control beta-cells, over-expression of I(h) increased insulin secretion at 2.8 mmol/l glucose. However, suppression of I(h) did not affect insulin secretion at both 2.8 and 11.1 mmol/l glucose. Current-clamp measurements revealed that HCN2 over-expression significantly reduced beta-cell membrane input resistance (R(in)), and resulted in a less-hyperpolarizing membrane response to the currents injected into the cell. Conversely, dominant negative HCN2-AYA expression led to a substantial increase of R(in), which was associated with a more hyperpolarizing membrane response to the currents injected. Remarkably, under low extracellular potassium conditions (2.5 mmol/l K(+)), suppression of I(h) resulted in increased membrane hyperpolarization and decreased insulin secretion. We conclude that I(h) in beta-cells possess the potential to modulate beta-cell membrane potential and insulin secretion under hypokalemic conditions.
Pflügers Archiv: European Journal of Physiology | 2009
Yelena Kryukova; Vitalyi O. Rybin; Jihong Qu; Susan F. Steinberg; Richard B. Robinson
Previously, we have shown that murine HCN2 channels over-expressed in newborn and adult cardiac myocytes produce currents with different biophysical characteristics. To investigate the role of tyrosine kinase modulation in these age-dependent differences, we employed the broad spectrum tyrosine kinase inhibitor erbstatin. Our results demonstrated distinct and separable effects of erbstatin on channel gating and current amplitude and a marked age dependence to these effects. In newborn myocytes, erbstatin decreased current amplitude, shifted the activation relation negative, and slowed activation kinetics. The effect on activation voltage but not that on amplitude was absent when expressing a cAMP-insensitive mutant (HCN2R/E), while a C-terminal truncated form of HCN2 (HCN2ΔCx) exhibited only the voltage dependent but not the amplitude effect of erbstatin. Thus, the action of erbstatin on the activation relation and current amplitude are distinct and separable in newborn myocytes, and the effect on activation voltage depends on the cAMP status of HCN2 channels. In contrast to newborn myocytes, erbstatin had no effect on HCN2 under control conditions in adult myocytes but induced a negative shift with no change in amplitude when saturated cAMP was added to the pipette solution. We conclude that erbstatin’s effects on HCN2 current magnitude and voltage dependence are distinct and separable, and there are fundamental developmental differences in the heart that affect channel function and its modulation by the tyrosine kinase inhibitor erbstatin.
Circulation Research | 2001
Jihong Qu; Andrea Barbuti; Lev Protas; Bina Santoro; Ira S. Cohen; Richard B. Robinson